ZnO基热电材料的掺杂改性及微结构调控
【摘要】:热电材料在废热发电、空调及冰箱制冷等领域具有广阔的应用前景,近年来受到了越来越大的关注。氧化物热电材料具有抗氧化、耐高温、并且无污染、无毒性、制备工艺简单等特点,在中高温热电应用领域具有很大的应用潜力。本论文着眼于n型氧化锌(ZnO)热电材料,采用固相反应法(SSR)和水热合成(HS)法制备化合物前驱粉体,采用放电等离子烧结法(SPS)制备多晶块体材料,并通过Al、Ni、Ga等元素掺杂改性优化载流子浓度,通过织构化与纳微复合结构化设计优化载流子迁移率、降低热导率,达到优化ZnO热电性能目的。在不同的烧结温度1173-1323K的条件下,通过SSR结合SPS技术制备了致密并且晶粒较小的Zn0.96Al0.04O块体材料。随着烧结温度的增加,ZnAl2O4第二相含量逐渐增加。1223K时烧结样品在823K时取得最大功率因子4.01×10~(-4)Wm-1K-2。1173K时烧结样品因其较小的晶粒尺寸及ZnAl2O4第二相的偏析,在773K时取得较低热导率2.42Wm-1K-1及最优ZT值0.11。通过HS和SPS技术制备了织构化Al掺杂Zn_(1-x)AlxO(x=0,0.01,0.02,0.04)块体。块体样品获得了~0.6的织构度,因水热过程中高的PH值8.5-9.0,A13+的固溶度较低,同时并未检测到ZnAl2O4第二相。织构样品容易获得较高的电子迁移率,随着测试温度由373K增加至573K, Zn0.96Al0.04O样品的电导率由68.2Scm-1增加至749.2Scm-1。最终,Zn0.96Al0.04O样品在573K时取得最.大功率因子4.7x 10~(-4)Wm-1K-2。通过HS和SPS技术制备了织构化Al、Ni共掺杂Zn0.98-xAl0.02NixO(x=0,0.01,0.02,0.03,0.04)块体。共掺杂的Ni2+在水热过程中更易进入ZnO晶胞间隙位置并膨胀晶胞,导致粉体及块体中A13+固溶度大幅度提升,并获得较高的载流子浓度~1×1020cm-3。高的A13+固溶度及高的迁移率导致Zn0.97Al0.02Ni0.01O样品在673K时取得最大功率因子6.16×10~(-4)Wm-1K-2,并在773K时取得最优ZT值0.057。通过HS和SPS技术制备了纳微复合结构的Zn_(1-x)GaxO(x=0,0.01,0.02,0.04)块体。样品获得了较高的Ga3+固溶度,还获得较高的载流子迁移率。x=0.01样品,在773K时取得最大功率因子7.52x10~(-4)Wm-1K-2。粉体纳微复合结构在块体中的被保持,样品获得了较小的晶粒,增加了声子的散射,减小了热导率。x=0.04样品,773K时取得最低热导率5.15Wm-1K-1。x=0.02样品,773K时取得最大ZT值0.067。通过HS和SPS技术制备了纳微复合结构的Zn_(1-x)AlxO(x=0,0.02,0.03,0.04)块体。纳微复合结构样品因存在纳米共格晶界导致其获得较高的载流子迁移率的同时降低热导率。x=0.02样品常温下获得了最高的载流子迁移率50.7cm2V-1s-1和载流子浓度1.5×1020cm-3,该样品的载流子迁移率已接近单晶的迁移率。x=0.04样品在1073K时取得最低热导率1.60Wm-1K-1。x=0.02样品在1073K时取得最优ZT值0.36。通过HS和SPS技术制备了C掺杂ZnO热电陶瓷。作为C源的TEA在SPS过程中,电离出C~(x+)和Cx-,进入ZnO晶胞。相比于未掺杂ZnO样品,C掺杂ZnO样品的可见光光吸收增加,禁带宽度减小,功率因子提升约1.5倍。
|
|
|
|
1 |
王继扬,刘红,魏景谦,胡小波,刘跃岗;热电材料的研究及进展[J];人工晶体学报;2000年S1期 |
2 |
戴闻;热电材料研究又成热点[J];物理;2000年03期 |
3 |
朱文,杨君友,崔昆,张同俊;热电材料在发电和制冷方面的应用前景及研究进展[J];材料科学与工程;2002年04期 |
4 |
马秋花,赵昆渝,李智东,刘国玺,葛伟萍;热电材料综述[J];电工材料;2004年01期 |
5 |
张丽鹏;于先进;肖晓明;;热电材料的研究进展[J];现代技术陶瓷;2006年03期 |
6 |
陈东勇;应鹏展;崔教林;毛立鼎;于磊;;热电材料的研究现状及应用[J];材料导报;2008年S1期 |
7 |
高峰;;前景广阔的热电材料[J];太阳能;2008年10期 |
8 |
张育生;赵昆渝;李智东;吴东;邹平;;热电材料的研究现状[J];有色金属加工;2008年01期 |
9 |
周金金;张文丽;;热电材料的现状及特点[J];河北理工大学学报(自然科学版);2009年02期 |
10 |
;福建物构所新颖热电材料探索研究获重要进展[J];中国材料进展;2009年05期 |
11 |
徐国栋;陈哲;严有为;刘德辉;尹懿;文红民;;高优值系数热电材料研究[J];材料导报;2010年03期 |
12 |
李翔;周园;任秀峰;年洪恩;王宏宾;;新型热电材料的研究进展[J];电源技术;2012年01期 |
13 |
;美新型热电材料性能跨越重要里程碑[J];电站辅机;2012年04期 |
14 |
;新型热电材料实现迄今最高“热变电”效率[J];功能材料信息;2012年06期 |
15 |
;热电材料[J];金属功能材料;1999年04期 |
16 |
徐伟;;寻找最优热电材料[J];百科知识;2014年02期 |
17 |
;高性能热电材料研发获重大进展[J];功能材料信息;2014年01期 |
18 |
黄志明;热电材料的未来[J];百科知识;2005年17期 |
19 |
杨威;;物理新科技——热电材料简介[J];数理化学习(高中版);2012年07期 |
20 |
徐桂英,葛昌纯;热电材料的研究和发展方向[J];材料导报;2000年11期 |
|