膦腈型阻燃环氧树脂的合成及性能表征
【摘要】:
环氧树脂材料因其优异的性能而广泛应用于电子电器领域,但它的极限氧指数不高,属于易然物质,因此,对环氧树脂的阻燃改性尤为重要。本论文通过取代、还原及缩合反应,将环保高效的膦腈化合物引入到环氧树脂分子链中,合成出一种新型的无卤阻燃膦腈型环氧树脂。
用4-羟基苯甲醛(p-HBA)取代六氯环三膦腈(P_3N_3Cl_6)上的氯原子,再将醛基还原,合成了六(4-羟基亚甲基苯氧基)环三膦腈(PN-OH)。并用元素分析,~(31)p和~1H核磁共振(NMR)和傅里叶红外光谱(FTIR)确定了其化学结构。PN-OH与双酚A缩水甘油醚(DGEBA)在三苯基膦(Ph_3P)作催化剂的条件下反应,合成了一种新型的膦腈型环氧树脂(PN-EP),用FTIR、凝胶渗透色谱(GPC)表征其化学结构,用盐酸/丙酮环氧滴定法测定其环氧当量(EEW)。
使用N,N'-二氨基二苯甲烷(DDM)、双氰胺(DICY)、热塑性酚醛树脂(Novolak)和均苯四甲酸二酐(PMDA)四种固化剂,对合成的PN-EP进行固化,得到四种固化物,用DSC研究体系的固化反应活性和固化物的玻璃化转变温度(T_g)。结果表明,固化剂的反应活性顺序为DDM<PMDA<Novolak<DICY。四种PN-EP固化物的T_g均大于130℃,且高于相应的DGEBA固化物的T_g。
用热重分析(TGA)研究固化物的热稳定性。结果表明,PN-EP固化物的最快失重温度和成炭率较DGEBA固化物有显著提高。固化物的热稳定性和成炭率顺序分别为PN-EP/PMDA<PN-EP/DDM<PN-EP/DICY<PN-EP/Novolak和PN-EP/DDM<PN-EP/DICY<PN-EP/PMDA<PN-EP/Novolak。对热重分析后的残炭进行红外分析。结果表明,其主要成分是磷的氮氧化合物和芳环的交联网状结构。
用UL94水平燃烧实验、垂直燃烧实验和极限氧指数(LOI)法研究四种固化物的阻燃性。结果表明,四种PN-EP固化物均表现出优异的阻燃性。其中,PN-EP/DDM固化物达UL94 V-1级,极限氧指数为28.5%;而使用Novolak,DICY,PMDA的PN-EP固化物均可达到UL94 V-0级,极限氧指数在30%以上。这种环境友好的无卤阻燃环氧树脂在电子电工领域有广泛的潜在应用。