基于指数矩的车牌识别研究
【摘要】:计算机视觉,正在从根本上改变我们的世界,以及我们每个人的生活方式。让机器之眼代替人眼,看懂我们的世界,实现智能化控制,解放人类的双手,是无数科学家梦寐以求的理想。视觉智能的潜在应用是无限的,人工智能几乎触及人类生活的各个方面,本文主要针对计算机视觉在智慧交通领域的应用展开研究,将指数矩的多畸变不变性运用到车辆追踪、车牌定位、以及车牌字符识别中,形成一套基于指数矩的车辆识别算法。指数矩的相关理论,是计算机视觉领域一个新的研究方向,不仅可以用于车牌识别,还可应用于常规的物体识别、场景识别等,因为指数矩的平移、缩放、和旋转不变性,对于目标物体的倾斜,远近变化,光照不足,天气恶劣等情况有很强的抗干扰能力,在不佳环境下依然具有很高的识别效率和准确度。基于指数矩的相关研究,对于未来智慧交通、智慧城市的建设有一定的价值。本文将指数矩作为图像的特征参数,对车辆追踪、车牌定位、及车牌字符识别展开了一系列研究,主要的研究工作和创新点有下列几个方面:(1)提出了基于指数矩的车辆跟踪算法。在反复的实验中,作者发现,在收费站和交通关卡,车辆相对严格的直线行驶,从某一固定点观察,车辆向远向近行驶可以视为连续的缩放变化,利用这一特征,作者将指数矩的缩放不变性运用到车辆跟踪中,提出了一种新的车辆跟踪算法。首先利用帧间差分法确定目标车辆,然后提取目标车辆的指数矩作为跟踪参数,通过不断调整搜索窗口的位置,实现多车辆的自动跟踪。较传统车辆跟踪算法,本文算法利用了指数矩的缩放不变性,降低了光照和天气对识别的影响,提高了跟踪的鲁棒性。车辆自动跟踪算法在收费站、交通关卡等有着广泛的应用前景。(2)提出了基于指数矩的车牌定位算法。本文提出了一种全新的车牌定位方法:基于指数矩特征的车牌定位方法。车牌定位是后续车牌字符识别的前提和基础,在车牌识别过程中具有至关重要的作用。本文将指数矩运用到车牌定位中,利用指数矩的平移、缩放、和旋转不变性,在车牌倾斜、车辆远/近变化、天气变化、光照不足等环境信息变化的情况下,依然具有良好的识别效果。本方法在不必进行倾斜校正、不必进行中心点调整以及比例调整的情况下,即可定位车牌,缩短了定位时间,具有良好的实际应用价值。(3)提出了基于指数矩和网格计算的车牌字符识别算法。作者根据车牌的字符形态学特征,对将车牌的所有字符分为12组:第1组是汉字组;第2-11组为形近的数字和字符组;第12组为模值无关组。将12个分组对应12个神经网络分类器,进行指数矩和网格特征训练,待处理的字符依次进入相应分类器,用指数矩特征进行初级分类,再利用网格特征进行第二次判定,确定最终的识别结果。该方法有效利用了指数矩的识别优势,同时,利用网格特征,弥补了指数矩由于旋转不变性在形似字符的判定中产生的误差。