收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

拟南芥蛋白激酶调控NADPH氧化酶RBOHF的机理研究

韩建普  
【摘要】:在生物进化的过程中,Ca2+成为真核生物中重要的第二信使之一。在响应生物或非生物胁迫时,细胞质内Ca2+浓度会发生特异的时空变化,这种特异的变化被称之为Ca2+信号。为了响应这些特异的钙信号,植物体内逐步产生了大量的Ca2+感受器和效应器。拟南芥 calcineurin B-like(CBL)和 CBL interacting protein kinase(CIPK)是其中一类典型的Ca2+信号感知和解码蛋白复合物,调控了一系列下游蛋白的应激响应。近些年来,活性氧ROS也被发现是另一类重要的第二信使,尤其在植物免疫反应以及长距离信号转导中有关键作用。最近的研究表明,Ca2+信号通路与ROS信号通路之间存在着某种关联。本研究发现,拟南芥NADPH氧化酶RBOH是Ca2+信号和ROS信号的一个重要结合点。本研究通过生物化学、细胞生物学和遗传学等手段对CBL/CIPK调控RBOHF蛋白活性的分子机理进行了深入研究。本研究发现,在人肾胚(HEK)293T细胞异源表达系统中,CIPK26和CIPK11均能够与CBL1/9 一起激活RBOHF的活性。进一步分析发现,CIPK11和CIPK26对RBOHF的激活不存在协同效应,推测CIPK11和CIPK26可能在不同信号通路中起作用或者二者存在功能冗余。生化结果显示,CIPK11和CIPK26均在体外磷酸化RBOHF-N,而且施加Ca2+能够增强RBOHF-N的磷酸化强度。在HEK293T细胞中进行深入分析发现,RBOHF的激活依赖于CIPK26的激酶活性以及CBL1/CIPK26复合物的细胞膜定位;而RBOHF活性的进一步增强依赖于Ca2+对RBOHF的结合。因此,磷酸化和Ca2+的结合对RBOHF的激活是至关重要的,而且二者似乎能够互相增强彼此的功能。本研究还发现另一个重要的蛋白激酶open stomata 1(OST1/SnRK2.6)也能够在HEK293T细胞中调控RBOHF的活性。在HEK293T细胞中,对OST1的N端增加一个细胞膜定位的信号(PM)后发现,PM-OST1强烈地激活RBOHF。该发现表明OST1在细胞膜上的活性受到如蛋白间互作或者蛋白修饰等未知机制的调控。进一步研究发现,ABA信号通路中的OST1和Ca2+依赖的的CBL1/CIPK26在激活RBOHF上存在协同机制。质谱分析发现,CIPK26和OST1作用于RBOHF-N的位点存在异同。在HEK293T细胞中对这些位点的功能分析使得对RBOHF的调控机制能够进行深入的解析。最后,本研究发现蛋白磷酸酶PP2C家族成员ABI1强烈抑制CBL1/CIPK26和PM-OST1对RBOHF的激活,从而负调控RBOHF的活性。综上所述,我们的研究表明,在拟南芥NADPH氧化酶RBOHF被激活后,其介导的ROS生成能够在很短时间内迅速增强,而RBOHF的激活依赖于蛋白激酶的磷酸化以及Ca2+的结合。同时,我们也发现,RBOHF的活性不仅受到Ca2+依赖的多个蛋白激酶的调控,而且也受到Ca2+不依赖的蛋白激酶调控,从而揭示了 RBOHF调控机制的复杂性。根据本研究的结果,我们对RBOHF的复杂调控机制提出如下的模型:植物体在响应外界胁迫或者发育过程中的刺激信号时,快速形成的特异Ca2+信号能够通过Ca2+结合到RBOHF和Ca2+依赖的磷酸化在数秒或者数分钟内迅速的激活RBOHF;而经过较长时间合成的ABA能够激活OST1,从而增强和维持RBOHF介导的ROS生成。当胁迫或者刺激信号减弱时,ABA浓度的降低使ABI1的活性得到增强,ABI1去磷酸化RBOHF,从而抑制其功能。通过这种方式,RBOHF的磷酸化和去磷酸化得以平衡,使得植物体内ROS的生成得到精细的调控。RBOHF的这些复杂调控机制的生物学意义也会随着研究方法的不断改进而被逐步揭示,而这些机制对于研究其它NADPH氧化酶的调控也有重要的参考价值。


知网文化
【相似文献】
中国期刊全文数据库 前16条
1 齐倩倩;吕佩源;;NADPH氧化酶在神经退行性疾病中的作用[J];国际神经病学神经外科学杂志;2015年04期
2 罗秀菊;;NADPH oxidase inhibitor apocynin attenuates ischemia/reperfusion induced myocardial injury in rats[J];China Medical Abstracts(Internal Medicine);2013年01期
3 ;Perioral and Facial Noxious Stimulation-induced C-fos-like Protein Expression and Its Relationship with NADPH-diaphorase Reactivity in Trigeminal Sensory Complex in the Rat[J];针刺研究;1994年Z1期
4 ;NADPH-diaphorase Activity in the Nuclei of Trigeminal Nerve and Its Change after Electroacupuncture[J];针刺研究;1994年Z1期
5 赖高惠;;利用阳光制造氨基酸[J];化工新型材料;1987年09期
6 姜方旭;韩英士;曾庆善;;大鼠鼻咽上皮组织酶学和发育酶学研究 (Ⅰ) 葡萄糖-6-磷酸脱氢酶产生的NADPH第Ⅰ和第Ⅱ途径[J];解剖学杂志;1987年03期
7 刘屏;乙酰肉碱对NADPH诱导的心脏微粒体类脂过氧化的保护作用[J];国外医学.药学分册;1988年03期
8 李国华;魏欣冰;张岫美;易凡;;NADPH氧化酶介导的氧化还原信号转导在高同型半胱氨酸血症中的作用及分子机制[J];细胞生物学杂志;2009年05期
9 朱梅仙;胡继芬;;NADPH氧化酶与子痫前期关系的研究进展[J];国外医学(妇产科学分册);2007年01期
10 张海燕;姜宗培;余学清;;NADPH氧化酶在糖尿病肾病中作用的研究进展[J];国外医学(内科学分册);2006年05期
11 徐宁;谢泽敏;唐小慧;潘薇;张广芬;周脉涛;;NADPH氧化酶介导的小胶质细胞活化在神经病理性疼痛和抑郁共病中的作用[J];临床麻醉学杂志;2017年06期
12 何璞;王志强;华锋;;调节NADPH对虾青素生物合成促进作用的研究[J];科技创业月刊;2015年20期
13 徐彤彤;吕祥威;姚艳敏;;茶多酚对力竭运动小鼠心肌NADPH氧化酶及活性氧代谢的影响[J];中国医院药学杂志;2011年03期
14 陈静,蔡称心;Direct Electrochemical Oxidation of NADPH at a Low Potential on the Carbon Nanotube Modified Glassy Carbon Electrode[J];Chinese Journal of Chemistry;2004年02期
15 杜爱民;袁莉;郭彩虹;刘晓玲;张莉莉;;阻断肾素-血管紧张素系统对糖尿病大鼠内脏脂肪组织NADPH氧化酶和iNOS表达的影响[J];中国糖尿病杂志;2009年02期
16 刘玉华;富志军;林以宁;;NADPH氧化酶和活性氧在心血管疾病中的作用[J];海峡药学;2013年07期
中国重要会议论文全文数据库 前10条
1 董静梅;周萍;;NADPH氧化酶合并谷氨酰胺干预对过度训练引起的中性粒细胞功能的调控及其机制研究[A];2013年全国竞技体育科学论文报告会论文摘要集[C];2013年
2 ;Activation of NADPH Oxidase:Phosphorylation of Protein and Lipid Complex[A];2008心血管药理学术研讨会论文汇编[C];2008年
3 Stephen T.O'Rourke;;20-HETE increases NADPH oxidase-derived ROS production and stimulates L-type calcium channel via PKC-dependent mechanism in cardiomyocytes[A];中国生理学会第23届全国会员代表大会暨生理学学术大会论文摘要文集[C];2010年
4 董丽华;孙绍光;李亮;韩梅;;TRAF6-mediated SM22α K21 Ubiquitination Promotes G6PD Activation and NADPH Production, Contributing to GSH Homeostasis and VSMC Survival In Vitro and In Vivo[A];第五届泛环渤海生物化学与分子生物学会学术交流会论文集[C];2015年
5 Longying Zha;Jiading Chen;Yajie Zhang;Xinwei Chu;Suxia Sun;Limei Mao;Wenhong Cao;;Soyasaponin Bb Antagonize Inflammation by Inhibiting TLR4 Recruitment into Lipid Rafts and Association with Adaptor Molecules through Suppression of NADPH Oxidase-Dependent ROS Generation[A];第十二届全国营养科学大会论文汇编[C];2015年
6 李岩;顾博雅;赵丽;;有氧运动调节自发性高血压大鼠下丘脑室旁核NADPH氧化酶的表达与活性[A];2013年中国生理学会运动生理学专业委员会年会暨“运动与健康”学术研讨会论文摘要汇编[C];2013年
7 赵瑛;陈峰;;白藜芦醇对高糖下脑微血管内皮细胞NADPH氧化酶的影响及干预机制[A];中华医学会第十三次全国神经病学学术会议论文汇编[C];2010年
8 郑晓峰;;NADPH sensor protein HSCARG down-regulates NO synthesis and is essential for cell viability[A];第二届全国“跨学科蛋白质研究”学术讨论会论文集[C];2008年
9 Fuqiang Sun;Liyan Hou;Yuning Che;Lin Zhang;Qingshan Wang;;NADPH oxidase contributes to learning and memory deficits in a mouse model of Parkinson's disease[A];中国毒理学会第七次全国会员代表大会暨中国毒理学会第六次中青年学者科技论坛论文摘要[C];2018年
10 孟涛;于金贵;;异丙酚抑制脂多糖诱导的,NADPH氧化酶调节的巨噬细胞肿瘤坏死因子a和白介素-6的分泌[A];中国中西医结合麻醉学会[CSIA]年会暨第二届全国中西医结合麻醉学术研讨会、江苏省中西医结合学会麻醉专业委员会成立大会论文汇编[C];2015年
中国博士学位论文全文数据库 前10条
1 韩建普;拟南芥蛋白激酶调控NADPH氧化酶RBOHF的机理研究[D];中国农业大学;2019年
2 于中连;烟草NADPH氧化酶在Na~+、Cu~(2+)胁迫中的活性变化及其作用[D];中国农业大学;2005年
3 郝福顺;植物质膜NADPH氧化酶参与ABA和镍离子诱导的活性氧积累[D];中国农业大学;2005年
4 张彪;NADPH氧化酶4是一个药物干预肿瘤转移的潜在靶点[D];浙江大学;2013年
5 谢洪涛;拟南芥NADPH氧化酶介导动态活性氧的水平从而调控绒毡层程序性细胞死亡及花粉发育的研究[D];山东农业大学;2015年
6 罗冬娇;Ⅲ型PI3K调控NADPH氧化酶活性促进血小板活化和血栓形成[D];浙江大学;2016年
7 秦媛媛;NADPH和NOX抑制剂Apocynin(夹竹桃麻素)联用在小鼠脑卒中模型中抗炎和神经保护的作用[D];苏州大学;2017年
8 解华;基于NADPH氧化酶活性调控的益心解毒方治疗心力衰竭的分子机制研究[D];北京中医药大学;2015年
9 唐湘祁;NADPH氧化酶调节MMP-9和E选择素表达与缺血再灌注脑损伤的病理机制[D];中南大学;2011年
10 刘育;抑制NADPH氧化酶对心力衰竭兔心脏电—机械活动的影响及其机制[D];武汉大学;2010年
中国硕士学位论文全文数据库 前10条
1 张美玲;表达NADPH和底物供应的关键基因对4-羟基异亮氨酸合成的影响[D];江南大学;2018年
2 顾怡;还原型烟酰胺腺嘌呤二核苷酸磷酸抑制血小板功能[D];苏州大学;2018年
3 周荧;NADPH抑制MPTP诱导的神经炎症和神经毒性[D];苏州大学;2018年
4 齐梦蝶;穿心莲中4种NADPH-细胞色素P450还原酶的功能表征[D];北京中医药大学;2018年
5 董仕桢;NADPH氧化酶在5-HT加重的小鼠结肠炎模型中的表达及作用[D];河南科技大学;2017年
6 翁晓芬;NADPH对肾缺血再灌注损伤的保护作用[D];苏州大学;2017年
7 吴晓娟;内皮NADPH氧化酶4调控动脉粥样硬化的作用机制[D];重庆大学;2017年
8 高雨梅;外周血中性粒细胞NADPH氧化酶与糖尿病肾病相关性研究[D];山西医科大学;2016年
9 余理;尿酸上调肾小管上皮细胞NADPH蛋白水平对肾小管上皮细胞凋亡的影响[D];中南大学;2011年
10 黄暨生;黄芩苷对NADPH氧化酶介导的炎症反应的影响[D];广州中医药大学;2012年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978