一般拓扑学中的几个问题
【摘要】:
1) If X is a regular 6- refinable space, then X is DC-like space if and only if A' is CSK-like space, thus the problem appeared in [2] is partly answered;
2) If Xn is a regular Lindelof DC-like space for each n W, then fl Xn is a
n6JV
Lindelof space;
3) A is a //-set of space X if and only if A is closed in Y whenever Y is a T? space, A is contained in an open set U of A' and U is embedded in Y , thus the question appeared in [15] is answered; Y C A, Y is countably //-set if and only if Y is closed in Z whenever Z is a T3 first countable space, Y is contained in an open set V of AT and V is embedded in Z; Y C X, Y is a countably //-bounded set if and only if Y is closed in every T3 first countable space Z in which X is embedded;
4) An example is given to show that the main result of [21] and 3.2.14 of [23] should be considered again;
5) Let X be a TI, S'-space and every point of X is (-set, if / : X - Y is a closed onto map, then there is a cr-discrete subspace Z of V, such that f~l(y) is an ui -compact subset of X for every y € Y \ Z\
6) If X is a regular fc-space with a a- HCP closed fc-network, then X is a hereditarily metalindelof space, thus the question appeared in [29] and [30] is answered; A normal sequential space with a a-HCP fc-network is a paracompact space;
7) If X is a regular space, and X = U{.Yn : n ?N}, Xn has a r-locally finite PF-regular closed net, Xn is a closed subset of X for each n € N, then X has a cr-locally finite PF-regular closed net; If X is a Lasnev C-scattered space, then X is a //F-netted space;
8) Two problems and some conclusions about relative topology are discussed.
|
|
|
|
1 |
宣立新;良序列紧fts[J];科学通报;1988年13期 |
2 |
李素苹;;日本一般拓扑学研究动态[J];东北师大学报(自然科学版);1988年03期 |
3 |
宣立新;超序列紧fts、可数超紧fts和超列紧fts[J];数学研究与评论;1989年04期 |
4 |
宣立新;强序列紧性、可数强紧性和强列紧性[J];南京师大学报(自然科学版);1989年02期 |
5 |
李素清
,闫长明;经济工作者应该学点一般拓扑学[J];税收纵横;1992年02期 |
6 |
朱玉;一般拓扑学与现代数学[J];松辽学刊(自然科学版);1983年00期 |
7 |
罗懋康;关于R.Engelking著《一般拓扑学》一书的几点订正[J];四川大学学报(自然科学版);1983年03期 |
8 |
;The Support of a Refinable Vector Satisfying an Inhomogeneous Refinement Equation[J];Acta Mathematica Sinica(English Series);2010年04期 |
9 |
LI Mei-juan;LIU Xiao-long;ZHENG Ming-yi;WANG Chen;LIU Yun-tao;CHEN Dong-feng;;Texture Evolution and Mechanical Properties of Mg/Al Multilayered Composite Sheets Processed by Accumulative Roll Bonding[J];Annual Report of China Institute of Atomic Energy;2016年00期 |
10 |
;Grain refinement of Mg-Li-Al cast alloys by adding typical master alloys[J];Progress in Natural Science:Materials International;2011年03期 |
11 |
;Convergence analysis of the adaptive finite element method with the red-green refinement[J];Science China(Mathematics);2010年02期 |
12 |
M.J.LI;T.TAMURA;N.OMURA;K.MIWA;;Microstructure formation and grain refinement of Mg-based alloys by electromagnetic vibration technique[J];Transactions of Nonferrous Metals Society of China;2010年07期 |
13 |
;Solutions of multiple vector refinement equations with infinite mask[J];Applied Mathematics:A Journal of Chinese Universities(Series B);2009年02期 |
14 |
;Crystal structural refinement for NdAlSi[J];Rare Metals;2006年04期 |
15 |
刘江南;介万奇;;Application of improved vacuum degassing technique to refinement of heat resistant steel P91[J];Transactions of Nonferrous Metals Society of China;2005年S3期 |
16 |
张小明,张廷杰,马光来,田锋,李中奎,周廉;Limit of structure refinement for 7075 aluminum alloy at elevated temperature by hot deformation[J];Transactions of Nonferrous Metals Society of China;2003年03期 |
17 |
王振卿,刘相法,柳延辉,张均燕,于丽娜,边秀房;Structural heredity of TiC and its influences on refinement behaviors of AlTiC master alloy[J];Transactions of Nonferrous Metals Society of China;2003年04期 |
18 |
吴正昌;Vector refinement equation and subdivision schemes in L_p spaces[J];Journal of Zhejiang University Science;2002年03期 |
19 |
T.Ando;BLOOMFIELD-WATSON TYPE EIGENVALUES INEQUALITIES[J];Numerical Mathematics A Journal of Chinese Universities(English Series);2000年S1期 |
20 |
;SYNTHESIS AND STRUCTURE OF A TRITHIOCARBONATO Mo(Et_4 N)_2 [(S_2)Mo_2O_2(μ-S)_2(CS_3)][J];Chinese Chemical Letters;1990年02期 |
|
|
|
|
|
1 |
Ahmed Dildar;[D];南京理工大学;2018年 |
2 |
朱温文;拓扑绝缘体中的拓扑激发[D];北京工业大学;2018年 |
|