收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

Electric Control of Magnetism in Composite Magnetoelectrics

韩叶梅  
【摘要】:A reversal of magnetization requiring only the application of an electric field can leadto low-power devices by replacing conventional magnetic switching methods. As such,there has been a tremendous revival of activity in the feld of magnetoelectrics,motivated largely by the entirely new device application promises that would beenabled by electric-feld control of magnetism. With remarkable large magnetoelectriccoupling effect and greater design flexibility, magnetoelectric composites have beenutilized to realize electrically control magnetization. In this work, research seeks toexplore the extent of electrically tuning magnetoelectrics, specially for lead-free novelsystems of LiNbO3-CoFe2O4(LNO-CFO) nanocomposite,NaNbO3-CoFe2O4(NNO-CFO) nanocomposite, NaNbO3-NiFe2O4(NNO-NFO)composite and (Co,Mg)(Al,Fe)2O4nanocomposite. Herein, we present discoveriesof new composite magnetoelectrics which reveal intriguing coupling betweenferroelectric and magnetic orders. The composite systems were characterizedmagnetoelectrically by studying the magnetic responses upon applying electric fields.Remarkable converse magnetoelectric coefficients were obtained. First, we attempt to demonstrate a magnetoelectric nanocomposite of(100-x)LNO-xCFO(x=20,30,50), consisting of rhombohedral R3c LNO and R3mCFO phases. The lead-free novel magnetoelectric composites were synthesized by a“one-step mixing” sol-gel and “two-step heat treatment” procedure. It is characterizedby a maximum inverse ME coefficient of6.5Oe cm·V-1measured in a106V/melectric field and displays a magnetic field dependent Vogel–Fulcher-like relaxationcharacterized by a relaxation time exp(H/k(T TH0mvf)),029.66s, H1.06ev,T Hvfrepresents the magnetic field-dependent Vogel-Fulchertemperature. The room temperature electric field-induced magnetization changerelaxes as18.05s, which is consistent with the dielectric relaxation. The activationenergy equals the activation energy of oxygen vacancy diffusion in niobate-basedcrystals, indicates that the dielectric and magnetoelectric relaxation are caused by themigration of positively charged oxygen vacancies migrating to the magnetoelectricinterface. In addition, we studied the temperature dependent magnetodielectric effectfor the LNO-CFO systems, and we attributed the MD effect to the extrinsic chargecarriers induced by the metallic ferromagnetic phase, probably to the intrinsic magnetic-polarization coupling at high frequencies. Second, we employed the magnetoelectric coupling in antiferroelectric/magnetic50NNO-50CFO nanocomposite. The composite displays well defined MH loop,dielectric responses and a magnetic field dependent Vogel–Fulcher-like dielectricrelaxation, from which the activation energy of1.11ev is extracted. By applyingelectric field, we can reversibly switch the magnetization and a maximum converseME coefficient of5.07Oe cm/V is obtained in a106V/m electric field. At roomtemperature, an electric control of magnetization relaxes as=14.09s, signifying amagnetoelectric relaxation, which shares the same mechanism with dielectricrelaxation (the dielectric relaxation frequency is0.071Hz0.0027Hz (1/f14.090.92s) at294K). Both the dielectric relaxation and magnetoelectric relaxatioincould be understood by considering the diffusion of the positively charged Oxygenvacancies. Additionally, temperature dependence of magnetodielectric effect was alsoinvestigated for the NNO-CFO composite. These results prove that NNO is a potentialferroelectric phase for fabricating lead-free multiferroic composites. Third, magnetodielectric effect and resonance magnetoelectric effect weredemonstrated in magnetoelectric composites of50NNO-50NFO and(100-x)NNO-xNFO (x=15,25,35,45). They were prepared by a standard solid-stateprocedure. Presence of Orthorhombic Pbma NaNbO3and Cubic Fd3m NiFe2O4phases were proved by X-ray diffraction analysis. The composites exhibitwell-defined magnetic and dielectric behaviors. A strong coupling between NNO andNFO phases has been revealed and a maximum room temperature MD coefficient of2.8%was obtained. The appearance of magnetodielectric effect in theferromagnetic/ferroelectric composite, NNO-NFO, indicates coupling between themagnetic and dielectric phases, which may be controllable by the application ofmagnetic fields. The converse magnetoelectric effect characteristics with drivingfrequency in a range of10k-15kHz were investigated at room temperature for(100-x)NNO-xNFO (x=15,25,35,45) systems. The converse magnetoelectriccouplings increase initially with increasing the driving frequencies and then decreasewith the further increase in the frequency. Overall enchancement of CME couplingeffect were obtained at resonance frequencies for all the investigated samples. LargeCME coefficients are obtained at electromechanical resonance frequency of12.8kHz.The composite of55NNO-45NFO exhibits a maximum CME coefficient of123Oe cm kV-1under3000Oe at12.8kHz. These lead-free multiferroic compositesexhibiting electrostatically induced magnetoelectric resonance provide greatopportunities for electric feld tunable microwave devices. Finally, effort has been made on the discovery of magnetoelectric coupling for a novel(Co,Mg)(Al,Fe)2O4nanocomposite. The comosite was synthesized by the “one-stepmixing” sol-gel and “two-step heat treatment” procedure. X-ray diffraction patternsindicate the formation of (Co,Mg)(Al,Fe)2O4solid solution instead of parent phases ofCFO and MAO. Consistent with the X-ray analysis, HRTEM and element mappinganalysis indicates the homogeneous distribution of Co, Fe, Mg, Al elements. Thiscomposite simultaneously exhibits dielectric and magnetic properties. The electricfeld-induced magnetization is shown to switch in response to the pulsed electric feld.With the assistance of a small magnetic bias feld of merely10G, one observesmagnetization switching. Large reversible electric-field induced magnetization changewas observed. A maximum magnetoelectric coefficient of1.8Oe cm·V-1wasobtained in a106V/m electric field and10Gauss bias magnetic field. Importantly, thisdemonstration of magnetization reversal in a multiferroic compound enables thedevelopment of a generation of magnetic devices dynamically controlled by electricfelds. Simplicity of our ceramic processing and strength of the observedmagnetoelectric coupling effects promise significant potential for future multifunctionapplications.


知网文化
【相似文献】
中国期刊全文数据库 前18条
1 QIN Ying;WU Shuya;LIU Xiaoqiang;CHEN Xiangming;;Dielectric, Magnetic and Magnetodielectric Characteristics of LuFeO_3 Ceramics[J];Journal of the Chinese Ceramic Society;2014年01期
2 Tanvir Hussain;Saadat A.Siddiqi;Shahid Atiq;M.S.Awan;;Induced modifications in the properties of Sr doped BiFeO_3 multiferroics[J];Progress in Natural Science:Materials International;2013年05期
3 ;Ultrafast photo-induced turning of magnetization and its relaxation dynamics in GaMnAs[J];Science China(Physics,Mechanics & Astronomy);2010年05期
4 ;Colossal magnetoresistance and spin-glass properties of La_(1-x)Te_xMnO_3 (x=0.04,0.1)[J];Chinese Science Bulletin;2003年13期
5 ;Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure[J];Science Foundation in China;2017年02期
6 李潜;王敦辉;曹庆琪;都有为;;Nonvolatile control of transport and magnetic properties in magnetoelectric heterostructures by electric field[J];Chinese Physics B;2017年09期
7 ;Progress in the study of molecular organized assemblies by dielectric relaxation spectroscopy[J];Progress in Natural Science;2006年03期
8 William Raja Victor;Marikani Arumugam;Thiruramanathan Pandirengan;Madhavan Durairaj;Raghavendra Reddy Varimalla;;Multiferroic Consequence of Porous (BiFeO_3)_x–(BiCrO_3)_(1-x) Composite Thin Films by Novel Sol–Gel Method[J];Acta Metallurgica Sinica(English Letters);2018年03期
9 SUN Young;YAN LiQin;CONG JunZhuang;;Multiferroics and magnetoelectric effects in charge ordered compounds[J];Science China(Physics,Mechanics & Astronomy);2013年01期
10 刘宇;翟良君;王怀玉;;Theoretical study of mutual control mechanism between magnetization and polarization in multiferroic materials[J];Chinese Physics B;2015年03期
11 ;Relaxor behavior and electrical properties of high dielectric constant materials[J];Science in China(Series E:Technological Sciences);2009年08期
12 E.E.Shaisha;Sh.F.El-Desouki;I.Shaltout;A.A.Bahgat;;Electrical Relaxation in Mixed Alkali Bi_2O_3-K_2O-Li_2O-Fe_2O_3 Glasses[J];Journal of Materials Science & Technology;2006年05期
13 倪少儒,余赋生,沈联芳,钱保功;FREQUENCY DEPENDENCE OF THE DIELECTRIC RELAXATION OF 1,2-POLYBUTADIENES[J];Chinese Journal of Polymer Science;1987年01期
14 王瑞琦;郑家成;陈涛;王朋帅;张金珊;崔祎;王超;李源;徐胜;袁峰;于伟强;;NMR evidence of charge fluctuations in multiferroic CuBr_2[J];Chinese Physics B;2018年03期
15 Suna Wang;Ranran Ma;Zhiwei Chen;Yunwu Li;Tingting Cao;Changhui Zhou;Junfeng Bai;;Solvent- and metal-directed lanthanide-organic frameworks based on pamoic acid: observation of slow magnetization relaxation,magnetocaloric effect and luminescent sensing[J];Science China(Chemistry);2016年08期
16 Adil Murtaza;杨森;周超;宋晓平;;Influence of Tb on easy magnetization direction and magnetostriction of ferromagnetic Laves phase GdFe_2 compounds[J];Chinese Physics B;2016年09期
17 蔺鹏婷;李祥;张丽;阴津华;程兴旺;王志宏;吴玉娟;吴光恒;;La-doped BiFeO_3:Synthesis and multiferroic property study[J];Chinese Physics B;2014年04期
18 李景德,郑凤,曹万强;Frozen dielectric spectroscopy method in time domain[J];Chinese Science Bulletin;1996年10期
中国重要会议论文全文数据库 前10条
1 Yi-Yan Wang;Jian-Nan Li;Xiao-Yue Zhang;Shuo Xiang;Xiao-Qing Zhao;;A Decanuclear 3d-4f Cluster with Slow Magnetic Relaxation[A];中国化学会第八届全国配位化学会议论文集-论文[C];2017年
2 沙磊;苗君;姜勇;;An investigation of the strain-mediated ME effect in CoFe_2O_4/BaTiO_3 0-0 type composite film[A];2012中国功能新材料学术论坛暨第三届全国电磁材料及器件学术会议论文摘要集[C];2012年
3 Wenbiao Xu;Xuejing Lan;Pu Zhang;Wenzhong Liu;;Influence of frequency increase on magnetic nanothermometer[A];第37届中国控制会议论文集(C)[C];2018年
4 Xiaohui Ma;Feifei Li;Shenru Ma;Yuewei Wu;Chengcheng Zhang;Huiliang Zhou;Weiming Song;Xiangyu Liu;;Ferromagnetic order and slow relaxation magnetization observed in a novel 2D azido-Cu(Ⅱ) network with benzoate derivative as coligand[A];中国化学会第七届全国结构化学学术会议论文摘要[C];2016年
5 Bing-Wu Wang;Zhida Chen;Song Gao;;Theoretical and experimental Understanding on the Magnetic Anisotropy of Lanthanide Single-Molecule Magnets[A];中国化学会第七届全国结构化学学术会议论文摘要[C];2016年
6 Xiwei Qi;Xiaoyan Zhang;Layi Wei;Guifang Sun;Jianquan Qi;;Preparation and Magnetic Properties of BiFeO_3 and NiCuZn Ferrite Multiferroic Composites[A];中国材料大会2012第10分会场:多铁性材料论文集[C];2012年
7 J.Wang;J.W.Zhang;;A Real-Space Phase Field Model for Domain Evolution of Ferromagnetic Materials[A];Proceedings of the 16th Annual Conference of Hong Kong Society of Theoretical and Applied Mechanics 2012、The 1st Mainland-Hong Kong Youth Forum on Mechanics 2012、The 8th Shanghai-Hong Kong Forum on Mechanics and Its Application 2012[C];2012年
8 John Shaw;Mimi J.Hill;;Experimental reassessment of the Shaw paleointensity method using laboratory-induced thermal remanent magnetization[A];中国科学院地质与地球物理研究所2002学术论文摘要汇编[C];2002年
9 许朝雄;张伟皓;黄圣言;黄良平;;Dynamic effects of the active feedback radiation damping field on spin magnetization[A];第十五届全国波谱学学术会议论文摘要集[C];2008年
10 ;Dielectric Tunability of Ba_xSr_(1-x)TiO_3 Thin Films Grown on A Compliant Substrate[A];2011年全国压电和声波理论及器件应用研讨会报告程序册及摘要集[C];2011年
中国博士学位论文全文数据库 前5条
1 韩叶梅;[D];天津大学;2012年
2 Fida Rehman;[D];北京理工大学;2016年
3 龚明萃;[D];中国协和医科大学;1994年
4 凯立德(Mustafa Khalid Taher Al-Nuaimi);[D];东南大学;2016年
5 Rashid khan;[D];中国科学技术大学;2018年
中国硕士学位论文全文数据库 前3条
1 Kasimov Damir;[D];南京理工大学;2018年
2 Mariyam Nabeel Siddiqui(马尼亚);基于J-A模型的智能材料驱动器回滞建模方法[D];华南理工大学;2016年
3 王雪;关于泥页岩岩屑的核磁共振纵向弛豫和横向弛豫时间对比的翻译报告[D];中国石油大学(华东);2013年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978