聚吡咯纳米线修饰电极的电催化研究—硝酸根离子的电催化还原
【摘要】:
聚吡咯具有优异的物理化学性能,在很多方面有广阔的应用前景。特别是在传感器和电催化领域。多孔的导电聚合物纳米线修饰电极能够为众多的电化学反应提供负载催化剂的位点和反应场所。对新型多孔纳米线修饰电极上的电催化反应和过程的研究能够为特定物质的电催化提供具体的方案和工艺。硝酸盐是世界范围内地下水最普遍的污染物之一,硝酸盐容易转化为亚硝酸盐,亚硝酸盐易与胺类化合物反应生成强致癌性物质亚硝胺。本文以硝酸根离子为模型化合物研究聚吡咯纳米线修饰电极的电催化性能,具有重要的理论和实际意义。
本文首次采用电化学方法研究了聚吡咯纳米线修饰电极对硝酸根离子的电催化还原作用。在聚吡咯纳米线修饰电极上,硝酸根离子的还原电位降低至-0.15 V并以此为基础组装了以-0.15 V为还原电位的硝酸根离子传感器。为使硝酸根离子的催化还原具有工业价值,在-1.2 V ~ -2.4 V电位范围内,研究了修饰电极对硝酸根的电解去除。
首次研究了制备聚吡咯纳米线修饰电极的电化学参数和溶液参数对传感器性能的影响。结果表明,聚合电位,循环伏安法的扫描速率、终止电位、扫描周数,聚合温度,聚合时间等对传感器的响应特性有显著影响。结果还显示聚合时溶液参数,如吡咯单体浓度、支持电解质的浓度、溶液的酸度、掺杂剂的量,以及硝酸根离子的“记忆效应”等对所制备的聚吡咯纳米线的形貌以及对硝酸根离子电催化还原电流有显著的影响。确定了组装传感器的最佳条件,制得了响应稳定、抗干扰能力强的硝酸根离子的传感器。研究了电解液温度、吡咯聚合电量、介质酸性、固相萃取电位、固相萃取时间等对PPy纳米线修饰电极响应的影响,建立了固相萃取电流法测定硝酸根离子浓度的方法。在最佳条件下,该方法的灵敏度和检测限分别为606.54 mA/mol·L~(-1)cm~2和9.98×10~(-6) mol·L~(-1)。实际样品测试表明,所建立方法的测定结果与常规的离子色谱检测法检测的结果无显著性差异。
本文还首次研究了负载有普通金属(Fe、Ni、NiP)的聚吡咯纳米线复合修饰电极对电解硝酸根离子的催化还原性能。研究结果表明,与未修饰石墨电极相比,金属(Fe、Ni、NiP)聚吡咯纳米线复合修饰电极有较好的催化性能。其中NiP修饰电极具有最好的综合性能(催化活性、电解产物、耗电量),但修饰电极的长期稳定性有待进一步提高。