切换仿射系统的多模型自适应控制及其在航空发动机上的应用
【摘要】:航空发动机是一类多学科融合的复杂系统,其建模和控制具有较大的难度。当航空发动机产生性能退化或者其零部件存在制造误差的问题时,系统平衡点将发生偏移,极易导致系统偏离期望的轨迹;此外,航空发动机也广泛存在着未建模动态以及系统多模态切换运行的问题,这也给控制器的设计带来了较大的困难和挑战。本文以航空发动机为被控对象,着重解决航空发动机存在不确定性、性能退化、多模态运行情况下的渐近跟踪控制问题。主要工作包含以下部分:(1)以某型航空发动机为被控对象,首先根据发动机机理建立发动机非线性部件级模型;然后以典型工作点为例,将各部件模型联合迭代以求解稳态平衡点;进一步,选取不同模态并将系统在工作点处进行线性化,得到线性化模型,同时考虑退化因素建立仿射系统模型;最后考虑不同运行模态,建立面向航空发动机控制的切换仿射系统。(2)针对仿射系统模型,提出多模型自适应控制策略解决状态跟踪问题。首先设计了一种可重置参数的自适应控制器和带有投影函数的自适应律;然后,为系统配置了3类辨识模型用作参数集;同时,基于一种增广滤波器来实时计算系统多维未知参数,并将计算出的参数传递到可重置参数的固定辨识模型;进一步,提出一种组合性能指标,使系统能够获取最优参数,并将其重置给自适应控制器以提高系统暂态性能;最后给出闭环误差系统渐近稳定的充分条件,并通过数值仿真验证了所提方法的有效性和优越性。(3)针对切换仿射系统模型,提出双层切换结构和控制律。首先使用多模型自适应控制策略设计子系统的内层切换以保证子系统跟踪问题;然后,分析系统在子系统和辨识模型都不切换、仅有辨识模型切换以及子系统和辨识模型均切换的三种情况下的系统Lyapunov函数的变化情况。进一步,利用平均驻留时间方法设计了外层切换律,保证了切换仿射系统对参考模型的渐近跟踪性能。最终给出闭环误差系统渐近稳定的充分条件,并通过数值仿真验证了所提方法的有效性。