收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

求解Web服务选取问题的粒子群算法研究

尹浩  
【摘要】:随着云计算及“软件作为服务理念”的扩散,互联网环境下软件系统的主要形态、运行方式、生产方式和使用方式正发生着巨大的变化。通过服务重用及动态聚合以构建随需应变的松耦合的分布式应用系统成为未来网络软件开发的重要趋势。服务聚合过程实现由服务本体到具体服务的绑定,其中,服务选择直接关系到服务聚合的全局质量以及绑定关系是否需要动态调整,因此对该问题的研究一直倍受关注。近来随着服务数量的爆炸性增长,网络上分布着大量功能相同、非功能特性各异的服务。如何在规模较大的功能相当的服务集合中选择质量较优且能够可靠运行的满足用户需求服务成为一个亟待解决的问题。在很多服务系统中存在多个服务等级,而已有的研究大都针对单个服务等级的情况,对同时考虑多个服务等级的情况研究还很少,因此如何选择出满足多个SLA等级约束条件同时使系统的整体效用最佳的服务实例也需要进一步研究。针对上述问题,本文分别从面向业务、面向功能、面向非资源共享的多SLA及面向资源共享的多SLA等角度对服务选取问题展开研究。此外已有研究表明专注于单独使用一种算法解决问题具有非常大的局限性,将元启发式算法与其它优化算法或元启发式算法之间有效结合,即混合元启发式算法,能够更加有效、更加灵活地处理实际问题。而作为一种高效的元启发式算法,粒子群算法已被成功应用于解决多个领域中的问题。因此,针对上述不同情况的服务选择问题所建立的优化模型,本文都研究采用粒子群算法与其它技术相结合的方式对其进行求解,并且通过实验对所提算法效果进行验证,具体包括:(1)研究了面向业务的服务选取问题,建立了该问题的单目标优化模型,并采用启发式局部搜索策略与粒子群算法相结合的方式提出了求解该问题的HEU-PSO算法。在该算法中,将粒子群算法的全局搜索能力与启发式算法的局部优化能力相结合,通过粒子群算法找到的有希望的局部区域,然后利用启发式局部搜索策略对局部区域进行深入搜索;从而实现对解空间全面深入地搜索。实验表明算法HEU-PSO在求解速率和求解质量方面优于其它对比算法。(2)研究了面向功能的大规模服务选取问题,在对该问题进行优化建模的基础上,根据该问题的特点通过将蚁群算法与粒子群算法相结合的方式提出了求解该问题的ACO-PSO算法。该算法先利用α-支配服务skyline搜索策略缩减问题规模,利用k-聚类设计蚁群构造图,在此基础上,将蚁群算法灵活搜索的特点与粒子群搜索策略(HEU-PSO)的深入搜索特点相结合,以实现对解空间快速有效地搜索。实验表明算法ACO-PSO求解效果显著。(3)从非资源共享的角度研究了SLA等级感知服务组合问题,建立了该问题的多目标离散优化模型,通过将变异操作结合到粒子群算法中提出了求解该问题的混合多目标离散粒子群算法(HMDPSO)。该算法中,根据该问题的特征,重新设计粒子更新策略,并且利用群体多样性指标提出了粒子变异策略以增加群体的多样性。另外,通过将一种基于候选服务约束支配关系的局部搜索策略结合到与算法HMDPSO,形成算法HMDPSO+,以进一步提高求解的性能。实验表明算法HMDPSO+能对解空间进行深入全面的搜索,并且求解性能突出。(4)从资源共享的角度研究了SLA等级感知服务组合问题,将该问题建模为多目标优化问题,并提出了基于资源共享的多目标粒子群算法(SMOPSO)。根据问题的特点,在算法中定义了粒子位置的形式和粒子部署策略,以体现相同具体服务实例的共享关系;沿用了传统粒子更新策略以实现对全局的搜索;设计了局部搜索策略以此来提高搜索的精度;提出了粒子变异策略来抑制算法的早熟收敛。实验表明算法(SMOPSO)能很好地对问题进行求解,并且具有强大的搜索能力和稳定的收敛特征。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 秦玉灵;孔宪仁;罗文波;;混沌量子粒子群算法在模型修正中的应用[J];计算机工程与应用;2010年02期
2 陈治明;;新型量子粒子群算法及其性能分析研究[J];福建电脑;2010年05期
3 牛永洁;;一种新型的混合粒子群算法[J];信息技术;2010年10期
4 全芙蓉;;粒子群算法的理论分析与研究[J];硅谷;2010年23期
5 刘衍民;赵庆祯;邵增珍;;一种改进的完全信息粒子群算法研究[J];曲阜师范大学学报(自然科学版);2011年01期
6 朱童;李小凡;鲁明文;;位置加权的改进粒子群算法[J];计算机工程与应用;2011年05期
7 熊智挺;谭阳红;易如方;陈赛华;;一种并行的自适应量子粒子群算法[J];计算机系统应用;2011年08期
8 孟纯青;;非线性粒子群算法[J];微计算机应用;2011年08期
9 任伟建;武璇;;一种动态改变学习因子的简化粒子群算法[J];自动化技术与应用;2012年10期
10 刘飞,孙明,李宁,孙德宝,邹彤;粒子群算法及其在布局优化中的应用[J];计算机工程与应用;2004年12期
11 熊盛武,刘麟,王琼,史旻;改进的多目标粒子群算法[J];武汉大学学报(理学版);2005年03期
12 王楠楠,石丽;基于离散粒子群算法的近似最大连通分量抽取[J];大连民族学院学报;2005年01期
13 孟凡辉,王秀坤,赫然,唐一源;一种改进的耗散粒子群算法[J];计算机工程与应用;2005年12期
14 孟建良;杨楷;庞春江;张江维;;基于改进粒子群算法的网络计划工期——费用优化[J];计算机应用与软件;2006年02期
15 陈长忆;叶永春;;基于粒子群算法的非线性方程组求解[J];计算机应用与软件;2006年05期
16 赵颖;;一种改进型粒子群算法[J];福建电脑;2006年07期
17 熊伟丽;徐保国;吴晓鹏;肖应旺;;带变异算子的改进粒子群算法研究[J];计算机工程与应用;2006年26期
18 方峻;唐普英;任诚;;一种非对称互联型粒子群算法[J];计算机工程与应用;2006年32期
19 张晓明;王儒敬;;一种带逆反的粒子群算法[J];计算机科学;2006年10期
20 柳伯超;秦茂玲;刘弘;;改进粒子群算法在货物装载中的应用[J];信息技术与信息化;2006年05期
中国重要会议论文全文数据库 前10条
1 朱童;李小凡;鲁明文;;位置加权的改进粒子群算法[A];中国科学院地质与地球物理研究所第11届(2011年度)学术年会论文集(上)[C];2012年
2 陈定;何炳发;;一种新的二进制粒子群算法在稀疏阵列综合中的应用[A];2009年全国天线年会论文集(上)[C];2009年
3 陈龙祥;蔡国平;;基于粒子群算法的时滞动力学系统的时滞辨识[A];第十二届全国非线性振动暨第九届全国非线性动力学和运动稳定性学术会议论文集[C];2009年
4 于颖;李永生;於孝春;;新型离散粒子群算法在波纹管优化设计中的应用[A];第十一届全国膨胀节学术会议膨胀节设计、制造和应用技术论文选集[C];2010年
5 刘卓倩;顾幸生;;一种基于信息熵的改进粒子群算法[A];系统仿真技术及其应用(第7卷)——'2005系统仿真技术及其应用学术交流会论文选编[C];2005年
6 熊伟丽;徐保国;;粒子群算法在支持向量机参数选择优化中的应用研究[A];2007中国控制与决策学术年会论文集[C];2007年
7 方卫华;徐兰玉;陈允平;;改进粒子群算法在大坝力学参数分区反演中的应用[A];2012年中国水力发电工程学会大坝安全监测专委会年会暨学术交流会论文集[C];2012年
8 熊伟丽;徐保国;;单个粒子收敛中心随机摄动的粒子群算法[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年
9 马向阳;陈琦;;以粒子群算法求解买卖双方存货主从对策[A];第十二届中国管理科学学术年会论文集[C];2010年
10 赵磊;;基于粒子群算法求解多目标函数优化问题[A];第二十一届中国(天津)’2007IT、网络、信息技术、电子、仪器仪表创新学术会议论文集[C];2007年
中国博士学位论文全文数据库 前10条
1 李庆伟;粒子群算法及电厂若干问题的研究[D];东南大学;2016年
2 杜毅;多阶段可变批生产线重构的研究[D];广东工业大学;2016年
3 尹浩;求解Web服务选取问题的粒子群算法研究[D];东北大学;2014年
4 王芳;粒子群算法的研究[D];西南大学;2006年
5 安镇宙;家庭粒子群算法及其奇偶性与收敛性分析[D];云南大学;2012年
6 刘建华;粒子群算法的基本理论及其改进研究[D];中南大学;2009年
7 黄平;粒子群算法改进及其在电力系统的应用[D];华南理工大学;2012年
8 胡成玉;面向动态环境的粒子群算法研究[D];华中科技大学;2010年
9 张静;基于混合离散粒子群算法的柔性作业车间调度问题研究[D];浙江工业大学;2014年
10 张宝;粒子群算法及其在卫星舱布局中的应用研究[D];大连理工大学;2007年
中国硕士学位论文全文数据库 前10条
1 张忠伟;结构优化中粒子群算法的研究与应用[D];大连理工大学;2009年
2 李强;基于改进粒子群算法的艾萨炉配料优化[D];昆明理工大学;2015年
3 付晓艳;基于粒子群算法的自调节隶属函数模糊控制器设计[D];河北联合大学;2014年
4 余汉森;粒子群算法的自适应变异研究[D];南京信息工程大学;2015年
5 梁计锋;基于改进粒子群算法的交通控制算法研究[D];长安大学;2015年
6 杨伟;基于粒子群算法的氧乐果合成过程建模研究[D];郑州大学;2015年
7 李程;基于粒子群算法的AS/RS优化调度方法研究[D];陕西科技大学;2015年
8 樊伟健;基于混合混沌粒子群算法求解变循环发动机数学模型问题[D];山东大学;2015年
9 陈百霞;考虑风电场并网的电力系统无功优化[D];山东大学;2015年
10 戴玉倩;基于混合动态粒子群算法的软件测试数据自动生成研究[D];江西理工大学;2015年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978