收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

基于地理位置的网络加权化社团发现算法

王彭  
【摘要】:自然界中存在的大量复杂系统都可以通过复杂网络加以描述,而社团结构是继小世界特性和无标度特性之后发现的最为重要的复杂网络特性。社团是网络中关联紧密的一群节点,往往具有某些共同特征,具有一定的实际物理意义。互联网是典型的复杂网络,深入研究互联网的社团结构可以帮助我们以分而治之的方式研究网络的功能及演化过程,更加准确的理解互联网的组织原则、拓扑结构等。目前针对互联网网络特性的社团发现研究还不足,传统社团发现算法并不能很好的反映互联网独有的特性。同时传统的社团发现算法大多数不能同时发现社团的重叠性和层次性。本文在局部适应度值最优化算法(LFM)思想的基础上,提出了基于共同邻居加权的社团发现算法(称之为CNW-LFM算法)。算法中通过共同邻居信息对边进行加权,其权值大小表示节点之间的紧密程度,并将适应度函数以网络中边的权值重新定义。然后在多个不同类型和不同规模的真实网络进行实验,发现CNW-LFM算法的重叠模块度高于原LFM算法,说明CNW-LFM算法优于原算法,使得社团划分结果更加合理,而且该算法可以同时发现社团的重叠性以及层次性。从而证明了结合网络特性进行加权的方法是可以提高社团结构发现的准确度以及合理性,为本文重点研究互联网社团结构打下了坚实的基础。针对互联网的宏观拓扑结构下的社团研究,在CNW-LFM算法的基础上,本文提出了基于地理位置加权的社团发现算法(称之为BGW-LFM算法)。针对互联网数据量庞大的问题,算法中提出了网络规模的缩减方法,从而明显地提高了时间效率。同时该算法充分考虑了互联网的地理特性,将地理位置信息和共同邻居信息相结合对边进行加权,边的权值依然表示节点之间联系的紧密程度。然后在多个不同规模的互联网网络进行实验,总结了算法中参数对社团划分结果的影响规律。对比实验中发现BGW-LFM算法的重叠模块度最高,其次是CNW-LFM算法,说明BGW-LFM算法使得社团划分结果更加合理。最后对比分析了社团结构的地理分布情况,发现BGW-LFM算法使得社团结构的地理分布更为紧凑。通过两方面的对比说明BGW-LFM算法使得对于互联网的社团结构发现更加准确,地理分布更为合理。而且该算法可以同时发现社团的重叠性以及层次性。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 刘晋霞;曾建潮;薛耀文;;复杂网络强社团结构探测[J];小型微型计算机系统;2011年04期
2 贾宁宁;封筠;;复杂网络的社团结构发现[J];河北省科学院学报;2013年02期
3 宣照国;苗静;党延忠;刘建国;;科研领域关联网络的社团结构分析[J];上海理工大学学报;2008年02期
4 王伊蕾;王远志;李涛;田生文;;伪度优先演化网络的社团结构研究[J];计算机工程与应用;2009年20期
5 汪小帆;刘亚冰;;复杂网络中的社团结构算法综述[J];电子科技大学学报;2009年05期
6 司夏萌;刘云;丁飞;熊菲;;具有社团结构的有界信任舆论涌现模型研究[J];系统仿真学报;2009年23期
7 谢军;;复杂网络中分析社团结构算法研究概述[J];信息通信;2010年04期
8 朱大勇;张新丽;李树全;;利用局部拓扑信息发现模糊社团结构[J];电子科技大学学报;2011年01期
9 邵斐;蒋国平;;基于社团结构的负载传输优化策略研究[J];物理学报;2011年07期
10 谈煜;梁润鹏;;一种基于层次化社团结构的网络可视化方法[J];微型电脑应用;2012年04期
11 邓智龙;淦文燕;;复杂网络中的社团结构发现方法[J];计算机科学;2012年S1期
12 马磊;;复杂网络中的邻域重叠社团结构探测[J];物联网技术;2012年07期
13 张聪;沈惠璋;李峰;杨何群;;复杂网络中社团结构发现的多分辨率密度模块度[J];物理学报;2012年14期
14 贾宗维;崔军;王晓芳;;复杂网络中社团结构的快速探测方法[J];科技通报;2013年01期
15 杨波;游新冬;段文奇;;复杂动态网络演化社团结构探测分析的研究进展[J];计算机应用研究;2013年05期
16 李涛;王伊蕾;王远志;;基于局域世界的加权演化网社团结构[J];计算机工程;2010年06期
17 ;本期“复杂性科学”专栏评述[J];电子科技大学学报;2011年04期
18 山玉段;徐勇;安利平;;一种复杂网络中社团划分的新算法[J];系统工程;2012年02期
19 丁全红;俞建宁;张建刚;张文娟;付宏睿;;拓扑辨识具有社团结构的加权复杂动态网络[J];河北师范大学学报(自然科学版);2012年03期
20 张素娟;甘若迅;樊锁海;刘鹏;;科研合作网络的社团结构和中心节点研究[J];武汉纺织大学学报;2012年03期
中国重要会议论文全文数据库 前5条
1 苗清影;汪小帆;;基于社团结构的复杂网络可控性研究[A];第五届全国复杂网络学术会议论文(摘要)汇集[C];2009年
2 李晓佳;张鹏;狄增如;樊瑛;;复杂网络中的社团结构[A];第四届全国网络科学学术论坛暨研究生暑期学校论文集[C];2008年
3 胡延庆;赵尔波;张丹;狄增如;樊瑛;;社团结构的局域和自适应比较性定义及其相应探测方法[A];第五届全国复杂网络学术会议论文(摘要)汇集[C];2009年
4 吴文涛;肖仰华;何震瀛;汪卫;余韬;;基于权重信息挖掘社会网络中的隐含社团[A];第26届中国数据库学术会议论文集(B辑)[C];2009年
5 樊瑛;李梦辉;张鹏;吴金闪;狄增如;;权重对网络结构和性质的影响——社团结构中权重的作用[A];2006全国复杂网络学术会议论文集[C];2006年
中国博士学位论文全文数据库 前10条
1 程建军;复杂网络中的社团检测方法研究[D];兰州大学;2015年
2 李琳;基于多元统计分析的社团挖掘算法研究[D];上海交通大学;2014年
3 武志昊;复杂网络中的重叠社团发现问题研究[D];北京交通大学;2013年
4 魏芳;基于图挖掘的网络社团结构发现[D];复旦大学;2008年
5 刘传建;复杂网络中的社团结构划分及分析应用[D];山东大学;2014年
6 何东晓;复杂网络社团结构发现方法研究[D];吉林大学;2014年
7 刘晋霞;复杂网络社团结构的探测及其在资金融通网络中的应用研究[D];兰州理工大学;2013年
8 刘瑶;社会网络特征分析与社团结构挖掘[D];电子科技大学;2013年
9 邬盈盈;基于V稳定性理论的复杂网络稳定性分析与牵制控制方法研究[D];浙江大学;2010年
10 于乐;社会网络中社团发现及网络演化分析[D];北京邮电大学;2014年
中国硕士学位论文全文数据库 前10条
1 刘微;复杂网络中社团结构的发现[D];辽宁师范大学;2011年
2 王大军;基于标签传播的社团检测算法研究[D];辽宁大学;2015年
3 杨强;微博社交网络模型的建立及其性质研究[D];北京化工大学;2015年
4 付世海;基于社团结构的网络多传播源定位算法研究[D];东北大学;2013年
5 马骁骑;复杂网络中社团检测技术研究[D];黑龙江大学;2015年
6 张献鹏;基于P4结构的社团挖掘方法[D];西安电子科技大学;2014年
7 陈奔燕;复杂网络的社团探测[D];湘潭大学;2015年
8 杜梅;基于半监督的社团结构发现方法研究[D];合肥工业大学;2014年
9 韩凌霄;复杂网络社团划分及城市公交网络研究[D];青岛理工大学;2015年
10 董哲;复杂网络中的社团发现算法研究[D];解放军信息工程大学;2014年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978