油页岩原位开采连续螺旋折流板式电加热器传热性能和加热效率研究
【摘要】:随着我国社会经济的高速发展,油气资源消费量和生产量存在巨大的不平衡。而我国的油页岩资源十分丰富,油页岩加热至裂解温度(450~550℃)可转化为油页岩油,是一种潜在的石油替代资源。油页岩原位转化是在地下将油页岩裂解为油页岩油,是油页岩清洁高效开发的必然趋势。温度(热量)是油页岩原位转化的关键因素,井下加热技术将加热器放置在井下,产生的高温热载体可直接加热油页岩层。井下加热器是井下加热技术的关键设备,现有燃烧式井下加热器存在燃烧稳定性差,火焰熄灭后不易再点燃的问题。此外,现有的电热式井下加热器以热传导方式加热油页岩层,加热效率低,且电加热棒表面无强化传热结构,加热器的寿命较短。因此,本文将连续螺旋折流板结构引入油页岩原位开采井下电加热器,以电加热棒为热源加热高温空气,对连续螺旋折流板式井下电加热器的传热性能和加热效率开展详细研究。首先,为研究螺距对加热器传热性能和加热效率的影响,开展了数值模拟和实验研究。对弓形折流板和连续螺旋折流板式加热器的壳程流场和温度场进行数值分析,发现弓形折流板加热器的壳程流态紊乱,而连续螺旋折流板加热器的壳程流动均匀,加热棒壁面温度分布均匀,因此,连续螺旋折流板结构更适合油页岩原位开采井下电加热器。通过搭建的井下电加热器实验系统,对螺距分别为50 mm、110 mm、160 mm和210 mm的四种连续螺旋折流板式井下电加热器(H50、H110、H160、H210)进行实验。结果表明,连续螺旋折流板的螺距越大,电加热棒的壁面平均温度越高,其变化速率越大,H50比H210低36.8%~44.4%。加热功率和质量流量对壁面平均温度的影响更为显著。综合性能指标K/△P随加热功率的变化无明显趋势,而随质量流量的增加却显著减小。在相同条件下,随着螺旋折流板螺距的减小,加热器的强化传热能力增强,修正熵产数和无量纲热阻逐渐减小。H110、H160和H210在低雷诺数区间的加热效率较高,而H50在高雷诺数区间内具有较高的加热效率。然后,研究了封隔器设置位置对井下电加热器传热性能和加热效率的影响。通过加热器样机的井下实验,发现仅在注热井的井头进行密封时,注热井中的高温空气将向油页岩顶板传递热量,同时在注热井底部形成局部冷热对流。因此,提出了井下电加热器和封隔器协同工作,提高高温空气的能量利用率。基于此,设计井下工况模拟装置,对在加热器的出口设置封隔器(方案1)和加热器的入口设置封隔器(方案2)两种方案分别进行实验。结果表明,加热器的出口温度在初始阶段上升较快,而在第二阶段逐渐下降,在最后阶段保持稳定。每个阶段的持续时间与螺旋折流板的螺距、加热功率和质量流量有关。方案2中的壳程空气温度高于方案1,因此,方案2中所有井下加热器的电加热棒壁面温度均高于方案1。除H50外,综合性指标随质量流量和加热功率的变化无明显趋势。总成本随着质量流量的增加先缓慢增加再急剧增长,而随加热功率的变化呈线性增长。方案1中,加热器的强化传热能力更强,因此其不可逆损失小于方案2。在高雷诺数区域,与H160和H210相比,H50的不可逆损失最小,其加热效率最高。就加热器的传热性能、经济性和加热效率而言,将封隔器设置在井下电加热器的出口是油页岩原位开采井下注热技术的最佳方案。最后,为进一步提高井下电加热器的加热效率,提出双壳体井下加热器结构。通过改变壳程空气的流动路径,回收并减少加热器壳体产生的热损失,进而提高电加热器的加热效率。对三种螺距的单壳体和双壳体加热器进行对比实验,研究壳体结构对加热器性能的影响。实验结果表明,质量流量对加热速率的影响大于加热功率。在壳程流场充分发展段,电加热棒壁面温度沿X轴线性增大。除加热器入口和出口处的壳体温度外,逆流双壳体加热器(CDS-DEH)和顺流双壳体加热器(PDS-DEH)的壳体温度分别比单壳体加热器(SS-DEH)低22.55%~80.00%和55.94%~74.43%。壳程空气以强制对流和热辐射两种方式从电加热棒壁面吸收热量,以强制对流传热为主。加热器壳体以热辐射和自然对流两种方式散失热量,以辐射传热为主。质量流量和加热功率对双壳体井下电加热器的加热效率无显著影响,而对单壳体井下电加热器影响较为显著。在实验范围内,PDS-DEH、CDS-DEH和SS-DEH的能量利用率分别为98.69%~99.80%、98.08%~99.65%和84.43%~94.25%,这表明,双壳体结构通过改变壳程空气的流动路径可有效的提高井下电加热器的加热效率。本文的研究结论可为我国油页岩原位转化技术,尤其对井下注热方案设计和注热工艺参数选择提供理论基础和技术指导。