新型功能性高分子抗菌涂层材料的设计、制备及其性能研究
【摘要】:随着临床需求的增长和科学技术的不断进步,人们对新型生物医用材料植入物和医疗设备的研究兴趣也不断地增强。如今,在医疗健康中,医用植入物和医学设备已经成为一部分人不可缺少的部分。大量的医用材料例如隐形眼睛、导管、种植牙、膝关节植入物、支架等在人体接触条件下使用或是植入人体;相应地,这些生物医用植入物和设备上发生的细菌附着和可能产生的细菌污染也在不断出现。此外,生物材料中微生物的含量较高时会导致严重的细菌感染和健康问题;有时为了避免细菌感染对人体的伤害,还必须去除或更换植入材料,这给患者带来了非常强烈的不适感。一般情况下,这些感染可以使用一些常规的抗菌剂进行治疗;但是,微生物很容易产生耐药性,这些抗菌剂的扩散也可能会对环境造成污染,甚至是对人体造成危害。因此,为了减轻由于细菌感染引起的发病率和死亡率,制备理想的抗菌材料对医疗卫生健康起着至关重要的作用,这一事实也鼓励着科学研究人员努力开发具有抗菌活性的材料以满足医疗设备和公共卫生产品的实际需求。抗菌涂层由于具有良好的表面性质和多变的化学结构以及易于加工制备等优点可以在细菌构成威胁之前将它们消除或者中和,因此成为理想的赋予材料抗菌性质的候选解决方案之一,并且也是对医用材料表面改性使用最广泛的一种方法。此外,它们还具有可以调控厚度的优势并且很容易地扩大生产规模,使涂料涂在物体的表面以满足多种用途;同时,由于聚合物涂层的结构功能具有可设计性、抗菌可靠性强、整体性能稳定等优点,因此是解决细菌附着与生长的一种有效策略。开发和制备具有良好抗菌性能的聚合物涂层对于抗菌材料的发展来说具有重大意义。在本论文中,我们从聚合物结构设计出发,分别采用聚氨酯反应、传统的自由基溶液聚合和可逆加成-断裂链转移聚合的方法,将抗菌单元引入聚合物结构中,将聚合物溶液利用简单的喷涂或浸涂制作成抗菌涂层。其中,研究的具体内容如下:第二章,我们设计并合成了季铵盐类聚氨酯预聚物(Pre-A)和双键封端的聚氨酯预聚物(Pre-B);还利用溶胶凝胶法对纳米Si O_2进行修饰;修饰后纳米Si O_2可以与聚氨酯预聚物以化学键相连。将这两种聚氨酯预聚物配制一定含量的溶液在光引发剂存在下,通过喷涂的方式,光交联固化后得到不同的涂层。测试结果表明,该聚氨酯涂层的光学透明度良好。抗菌结果表明,随着季铵盐类聚氨酯预聚物Pre-A含量的增加,涂层抗菌性能增强,说明涂层对变形链球菌的生长抑制具有对Pre-A的浓度依赖性。此外,涂层对L929成纤维细胞的毒性低。该聚氨酯抗菌涂层制备过程简单,是制备抗菌涂层的一种有效策略。第三章,由于第二章制备的抗菌涂层在使用过程中很容易发生磨损或断裂,因此我们制备了有机-无机杂化的抗菌涂层。首先合成了龙脑基丙烯酸酯单体,利用该单体与甲基丙烯酸甲酯和3-(甲基丙烯酰氧)丙基三甲氧基硅烷通过传统的自由基溶液聚合方法得到了龙脑基丙烯酸酯不同含量的可进行溶液加工的聚合物。通过简单地混合不同聚合物溶液和杂化硅溶胶溶液分别利用共价键(-Si-O-C-键)和环氧基团的单独交联制备了抗菌涂层。通过红外光谱和水相接触角测试验证我们已成功将聚合物引入表面。抗菌涂层具有光滑的表面、较低的表面粗糙度和良好的透明性。另外,涂层HS-MKB-8具有良好的耐久性和坚固性,说明杂化硅溶胶溶液的引入可以有效提高涂层的力学性能。除此之外,HS-MKB-8还具有优异的抗菌粘附性能,对大肠杆菌(革兰氏阴性菌)和变形链球菌(革兰氏阳性菌)的抑制率分别为94.3%和80.6%。体外和动物体内细胞实验证明HS-MKB-8涂层具有良好的生物相容性和生物安全性。这种制备简便且具有良好机械性能的涂层在医学材料领域有良好的应用前景。第四章,由于第三章龙脑独特的结构导致材料表面的疏水性在一定程度上限制了其广泛应用,因此我们制备了龙脑基亲水性抗菌涂层材料。将两性离子2-甲基丙烯酰氧乙基磷酰胆碱(MPC)单体与双环单萜结构龙脑化合物结合并利用可逆加成-断裂链转移聚合方法先获得了不同的聚合物。然后在基材上预先形成了氨基丙二腈对甲苯磺酸盐AMN涂层,并将不同聚合物进行溶液加工后通过席夫碱反应将其引入到基材表面。通过X射线光电子能谱验证我们成功将聚合物引入表面,并通过静态水相接触角确定了由于两性离子MPC的存在得到了亲水性的涂层表面;与此同时,这些聚合物涂层具有较低的表面粗糙度。SA-PMFB-40%涂层表面两性离子MPC与天然龙脑可以分别依靠超水合作用和特殊的立体化学结构使材料表面具有防污性能。另外,涂层SA-PMFB-40%可以有效地抑制大肠杆菌和金黄色葡萄球菌在表面的附着与生长。并且,聚合物和不同的涂层对MRC-5(肺成纤维细胞)毒性低,具有良好的生物安全性。我们的结果表明,这种基于天然龙脑制备亲水性聚合物抗菌材料在医学方面具备潜在的应用价值。