收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

粒子群优化算法及其应用研究

田野  
【摘要】: 在经济计划、工程设计、生产制造、交通运输、信息处理等领域存在着大量的最优化问题,即在众多可行的决策方案中寻求最优方案。有效解决这些问题不仅具有重要的社会意义,而且也能产生巨大的经济效益。最优化作为一个独立的数学分支,其目的就是为了解决最优化问题,而具体解决最优化问题的方法就被称为最优化方法。传统的优化方法,如牛顿法、迭代法等是以数学为基础,对问题的描述有严格的要求,通常要求问题的目标函数和约束条件是连续可微的。而随着先进制造技术的发展,实际的优化问题变得越来越复杂,这使得传统的优化方法越发显得无能为力,因此,亟待寻求面向复杂问题的新优化方法。 进化计算源于人们对自然界或生物界一些现象的观察和模拟。相对于传统的优化方法,以进化计算为代表的仿生智能优化方法通常对各类复杂优化问题具有很强的适应性、鲁棒性和并行处理等优点,并被广泛地应用于科学研究和工业生产等众多领域。粒子群算法作为进化算法中的一种,由于其参数较少、且易于实现等特点,因此一经提出,就在许多领域得到了成功的应用。本文基于粒子群算法,对单目标规划和生产调度等问题进行了研究,提出了一些优化算法,并通过大量的实验对算法的性能进行了验证,实验结果表明,本文提出的算法能够有效地克服粒子群算法过早收敛,同时求解质量也有了明显的改进。主要研究内容如下: 1、以单目标非线性规划问题为研究对象,提出了一种混合的粒子群算法PSO-EM。该算法结合了粒子群算法的自我改进的思想(每个粒子都通过信息交互不断地进行学习)和类电磁机制算法的吸引-排斥机制,粒子群算法和类电磁机制算法交替执行,在执行完粒子群算法后,将类电磁机制算法的吸引-排斥机制作用于粒子的当前个体最优,迫使粒子的当前个体最优再次向更好的位置移动。因此,粒子的当前个体最优的更新不仅依赖当前群体最优,也受到其他粒子的当前个体最优的影响,通过这种方式来加快算法的收敛速度。实验结果表明,PSO-EM算法无论是在收敛速度、收敛精度以及成功率上都有了明显的提高。 2、提出了一种基于多群体的改进粒子群算法IMPSO求解单目标非线性规划问题。该算法采用有偏(类似人才层次结构)的群体划分方式,将整个群体划分为三个规模不均等的子群体,不同的子群体采取不同的速度更新策略。最优子群体(better-population)的目的是加快收敛速度,最差子群体(worse-population)的目的是为了有机会探寻更大的搜索空间,减少陷入局部极值的可能。而次优子群体(middle-population)的作用则是为了实现对搜索空间进行更大范围探索和已确定搜索范围内开采间的平衡。同时,通过引入变异策略来进行局部精细搜索,并利用不同群体间的交叉来维护群体的多样性,避免早熟收敛。通过与一些经典的粒子群算法以及有代表性的新粒子群算法的实验对比,验证了算法的有效性和高效性。 3、置换流水车间调度问题是比较典型的生产调度问题,要求多个作业在不同的机器上进行加工,并且每台机器上的所有作业的加工顺序都必须相同。针对该问题,提出一种混合粒子群算法HDCPSO。HDCPSO算法利用迭代贪心算法(Iterated Greedy Algorithm,IG)的作业毁坏(Destruction)与构造(Construction)机制来对粒子的当前个体最优进行变异操作,并且通过引入个体徘徊的概念来控制变异发生的条件,防止粒子过早地发生停滞,降低群体早熟收敛的概率。其次,算法采用了粒子重新初始化策略,通过对部分较差粒子(适应度较差或者多样性较差)进行重新初始化以保证群体的多样性。同时,采用了基于插入邻域的局部搜索机制,通过对最优个体的插入邻域进行搜索,试图找到更好的解来提高算法的收敛速度。针对不同规模问题,与现有一些算法的实验对比表明,HDCPSO算法无论在求解质量,还是稳定性方面都优于对比算法。 4、针对两阶段装配调度问题,提出离散粒子群算法DPSO。两阶段装配调度问题可以认为是流水调度问题的扩展,整个作业的加工分为两个阶段,每个操作都要在不同的机器上进行加工,最后一个操作要在第二阶段进行处理,并且每个作业的最后一个操作只有在第一阶段的操作加工完成后才能开始在第二阶段的机器上进行加工。本文中首先重新定义了粒子的速度,并根据速度相应地修改了粒子的移动。为了避免算法过早地陷入局部极值,增加了对粒子的自适应变异操作,引入了个体强度,利用个体强度来控制个体变异,并根据个体适应度来决定变异的模式。同时,通过基于交换邻域的搜索机制来强化个体的局部搜索能力,提高算法的收敛速度。最后在不同规模的问题上进行实验对比,验证了算法的有效性,该算法在最优解质量上优于其他对比算法,并且在执行时间上也具有较强的竞争力。 近年来,对粒子群优化算法及其应用的研究已经得到了国内外众多学者的关注,并且涌现了大量的改进算法和新的应用。本文对粒子群算法求解规划问题和生产调度问题进行了研究,并提出了一些更有效的优化算法。在粒子群算法的改进、混合等研究以及在更多领域的应用上,本文的研究工作具有一定的理论意义和应用价值。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 覃建波;邱小华;许宁;宋湛华;;改进粒子群算法在异步电机静态参数识别中的应用[J];电机技术;2008年06期
2 张俊宝;;基于改进PSO理论的二维Otsu分割算法[J];电光与控制;2010年07期
3 廖锋;高兴宝;;多群体差分演化算法及其应用[J];计算机仿真;2011年01期
4 陈晶;潘全科;;求解独立任务调度问题的改进粒子群算法[J];微电子学与计算机;2009年01期
5 刘华蓥,林玉娥,齐名军;求解约束优化问题的改进粒子群算法[J];大庆石油学院学报;2005年04期
6 牛玉会;;基于粒子群算法在六峰驼背函数中的应用[J];当代经理人(下旬刊);2006年08期
7 邹长武;羊依金;丁恒康;张雪乔;;基于粒子群算法的GM(1,1)在经济发展预测中的应用[J];成都信息工程学院学报;2007年03期
8 段晓东;;基于群智能的计算与仿真方法研究[J];大连民族学院学报;2007年03期
9 周苗;陈义保;刘加光;;一种新的协同多目标粒子群算法[J];山东理工大学学报(自然科学版);2008年05期
10 王晟;潘郁;;个体激励粒子群算法及其社会学背景分析[J];计算机工程;2008年21期
11 陈永刚;牛丹梅;范庆辉;;粒子群算法在组合优化问题上的研究与发展[J];电脑与电信;2008年12期
12 刘胜利;刘鹏飞;;粒子群算法在黑盒测试中的应用[J];现代经济信息;2009年21期
13 邓璐娟;卢华琦;孙义坤;刁海港;;改进的粒子群算法在测试数据生成中的应用[J];计算机技术与发展;2010年07期
14 秦明明;王坚;姜雷;;基于改进粒子群算法的电力系统有功调度[J];微计算机信息;2010年19期
15 刘衍民;牛奔;赵庆祯;;求解约束优化问题的多目标粒子群算法[J];计算机应用研究;2011年03期
16 汲万峰;姜礼平;朱建冲;孙钧正;;基本粒子群算法和遗传算法用于航路规划的比较[J];火力与指挥控制;2011年06期
17 高尚,韩斌,吴小俊,杨静宇;求解旅行商问题的混合粒子群优化算法[J];控制与决策;2004年11期
18 岑翼刚,秦元庆,孙德宝,李宁;粒子群算法在小波神经网络中的应用[J];系统仿真学报;2004年12期
19 雍龙泉;张建科;张晓清;;求解一类随机优化问题的粒子群算法[J];武汉大学学报(理学版);2005年S2期
20 黄祎;孙德宝;秦元庆;;基于粒子群算法的移动机器人路径规划[J];兵工自动化;2006年04期
中国重要会议论文全文数据库 前10条
1 赵亮;;遗传增强混沌粒子群算法[A];第二十九届中国控制会议论文集[C];2010年
2 于颖;李永生;於孝春;;新型离散粒子群算法在波纹管优化设计中的应用[A];第十一届全国膨胀节学术会议膨胀节设计、制造和应用技术论文选集[C];2010年
3 张顶学;关治洪;刘新芝;;多种群并行粒子群算法研究[A];第二十六届中国控制会议论文集[C];2007年
4 丛亮;胡成全;郭宗鹏;姜宇;沙丽华;;基于模拟退火思想的基本粒子群算法改进[A];第二十七届中国控制会议论文集[C];2008年
5 张顶学;朱迎辉;廖锐全;;一种动态改变惯性权重的粒子群算法[A];第二十九届中国控制会议论文集[C];2010年
6 张顶学;廖锐全;;粒子群算法分析及惯性权重的动态改变策略[A];第二十七届中国控制会议论文集[C];2008年
7 常俊林;梁君燕;魏巍;;解决流水车间双目标调度问题的免疫粒子群算法[A];中国自动化学会控制理论专业委员会B卷[C];2011年
8 史久根;徐胜生;;基于文化-粒子群算法的机器人路径规划算法[A];2011中国仪器仪表与测控技术大会论文集[C];2011年
9 段练;张玉斌;;坐标改进型粒子群算法在应用层组播中的应用[A];煤炭机电与自动化实用技术[C];2012年
10 周晓君;阳春华;桂卫华;;可变随机函数的PSO算法[A];中国自动化学会控制理论专业委员会B卷[C];2011年
中国博士学位论文全文数据库 前10条
1 田野;粒子群优化算法及其应用研究[D];吉林大学;2010年
2 安镇宙;家庭粒子群算法及其奇偶性与收敛性分析[D];云南大学;2012年
3 常彦伟;纵向参数多子群粒子群算法的研究与应用[D];中国矿业大学;2009年
4 胡成玉;面向动态环境的粒子群算法研究[D];华中科技大学;2010年
5 黄平;粒子群算法改进及其在电力系统的应用[D];华南理工大学;2012年
6 全海燕;混合克隆竞争与启发学习策略的多角色随机游动粒子群算法研究[D];云南大学;2010年
7 秦全德;粒子群算法研究及应用[D];华南理工大学;2011年
8 岳本贤;粒子群算法拓展研究及在约束布局优化中应用[D];大连理工大学;2012年
9 刘衍民;粒子群算法的研究及应用[D];山东师范大学;2011年
10 薛尧予;群能量守恒粒子群算法及其在发酵过程控制中的应用研究[D];北京化工大学;2010年
中国硕士学位论文全文数据库 前10条
1 杨立标;基于混合优化策略的粒子群算法及其应用研究[D];哈尔滨工程大学;2010年
2 陈琳玲;基于简化粒子群算法的测试数据自动生成方法研究[D];西南大学;2010年
3 赵辛欣;随机聚焦粒子群算法在机组组合中的应用[D];西南交通大学;2010年
4 王冬;基于粒子群算法的Web文本信息过滤研究[D];华北电力大学(河北);2010年
5 张文静;协同粒子群算法及其在多车场路径优化问题中的应用[D];华东师范大学;2011年
6 李文婷;基于改进型粒子群算法的热轧带钢宽度神经网络预报模型的研究[D];太原理工大学;2011年
7 汪华;粒子群算法的研究及其在供水优化调度中的应用[D];合肥工业大学;2011年
8 张念志;基于粒子群算法的集送货一体化车辆路径问题研究[D];山东大学;2010年
9 袁洲;基于改进粒子群算法的项目反应理论3PLM参数估计方法研究[D];吉林大学;2011年
10 苏同芬;改进的免疫粒子群算法及梯级水库优化调度问题的研究[D];太原理工大学;2010年
中国重要报纸全文数据库 前10条
1 尔冬;为什么女性领导人偏少[N];中国妇女报;2003年
2 本报记者 赵绍华;初中“是非期”家长多留意[N];健康时报;2003年
3 钱鑫;幼儿消费较多盲目[N];中国妇女报;2004年
4 吴小勇 黄希庭 西南大学心理学院;身份凸显性:自我的“操盘手”[N];中国社会科学报;2011年
5 杨斌鹄;你的生活,现在好吗?[N];西安日报;2003年
6 吴任名 周素萍 王珏;谁在消费“奢侈”服装[N];经理日报;2004年
7 汪立丰;基础教育中创新精神的培养[N];中国教育报;2003年
8 人民公安报采访组 马玉宝 刘学广 孟琳 李仕欣 杨烨;崭新的教育理念[N];人民公安报;2003年
9 马其东;影响草坪种子寿命的因素[N];中国花卉报;2004年
10 本报记者 胡京京;在药理研究中发现防病治病规律[N];中国中医药报;2001年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978