氨基多羧酸—多金属氧酸盐无机—有机杂化物的研究
【摘要】:本论文以经典Keggin型和Anderson多金属氧酸盐为主要基本建筑单元,相继以主族金属元素、过渡金属和稀土离子与多氨基多羧酸螯合配体形成的配合物或以共价键或以氢键作用于多金属氧酸盐,合成具有新颖结构的无机-有机杂化化合物。并且研究这些化合物的合成条件及规律,探讨三类金属阳离子、相同类型的有机配体对整个结构的影响,以及新物质结构和性能间的关系。拓宽现有的认知范围,为多金属氧酸盐衍生物的定向合成提供理论和实验数据。
利用常规水溶液合成方法,合成了23个新型多氨基多羧酸类多金属氧酸盐基无机-有机杂化化合物。通过元素分析,IR,TG,和单晶X–射线衍射对晶体结构进行了表征,并对部分化合物的荧光性质和磁学性质进行了初步研究。主要研究结果如下:
1.在常规水溶液条件下,以主族元素与多氨基多羧酸类配体(环己二胺四乙酸,Diaminocyclohexanetetraacetic acid = DCTA)螯合物和Keggin型多金属氧酸盐为基础单元,合成并表征了9个未见文献报道的多金属氧酸盐基无机-有机杂化化合物。
(NH_4)_4(H_3O)[Ca_2Na_2(H_2O)_(14)(HDCTA)_2( BW_(12)O_(40))]·3H_2O (1)
(NH_4)_4(H_3O)[Sr_2Na_2(H_2O)_4(μ-H_2O)_2(HDCTA)_2( BW_(12)O_(40))]·7H_2O (2)
(NH_4)_4(H_3O)[Sr_2K (HDCTA)_2(H_2O)_(14)][SiW_(12)O_(40)]·H_2O (3)
(NH_4)_4[Na_2(H_2O)_(12)][Al(DCTA)]2[SiW_(12)O_(40)]·9H_2O (4)
(NH_4)_6[Pb_3(H_2O)_2(DCTA)_2][SiW_(12)O_(40)]·8H_2O (5)
[Na_6Bi_2(H_2O)_22(DCTA)_2][SiW_(12)O_(40)]·2H_2O (6)
(NH_4)_4[Ba(DCTA)_2(OH)_2SiW_(12)O_(40)]·8H_2O (7)
[Ca_4(H_2O)_24(H_2DCTA)_2][SiW_(12)O_(40)]·8H_2O (8)
(NH_4)_5[Ca_3(H_2O)_(10)(HEGTA)_2( BW_(12)O_(40))]·3H_2O (9)
在化合物中,主族元素金属可以同时接受POM和配体DCTA提供的电子对,在一定条件下形成配位聚合物链POM-M-DCTA。BW_(12)O_(40)~(5-)的表面电荷比SiW_(12)O_(40)~(4-)的多导致它对金属离子具有更强的配位能力。
2.在常规水溶液条件下,以过渡金属离子与多氨基多羧酸类配体螯合物和Keggin和Anderson型多金属氧酸盐为基础单元,合成并表征了9个未见文献报道的多金属氧酸盐基无机-有机杂化化合物。
[{Cu_4(EGTA)_2(H_2O)_4}{Cu_2(H_2O)_8(SiW_(12)O_(40))}]·14H_2O (10)
(NH_4)_5[Cu_4(EGTA)_2(H_2O)_4(BW_(12)O_(40))]·4H_2O (11)
(NH_4)_6[Cu_2K_2Na(H_2O)_2(DCTA)_2(BW_(12)O_(40))]·5H_2O (12)
(NH_4)_7[Cu_2(H_2O)_2(HDCTA)_2][β-Mo_8O_(26)]·14H_2O (13)
[K_3(H_2O)_(12){Cu_2(EGTA)(H_2O)_4Cu(H_2O)_6Cu_4(GeW_9O_(33))_2}]·16H_2O (14)
(NH_4)_2[Zn_5(DCTA)_2(H_2O)16][SiW_(12)O_(40)]·8H_2O (15)
(NH_4)_4[Cd_4(DCTA)_2(H_2O)_8][SiW_(12)O_(40)]·6H_2O (16)
(NH_4)3[Ni_4Na(H_2O)_8(DCTA)_2][SiW_(12)O_(40)]·15H_2O (17)
Na_3[Zr(EDTA)(H_2O)_2]_2[Cr(OH)_6Mo_6O_(18)]·10H_2O (18)
EGTA =Ethyleneglycol-bis-(2-aminoethylether)-tetraacetic acid,乙二醇二乙醚二胺四乙酸;EDTA= Ethylenediaminetetraacetic acid乙二胺四乙酸
在这一组化合物中,充分显示了过渡金属与多氨基多羧酸类配体配位的多样性。与主族元素相比,过渡金属离子有更强的形成多核配合物的倾向。化合物18是到目前为止第一例Zr(Ⅳ)修饰型多酸化合物的例子。化合物10的变温磁化率测定结果显示Cu~(2+)之间存在弱的反铁磁性相互作用,其发射光谱可归属于配体金属之间的电荷转移(LMCT)。
3.在常规水溶液条件下,以稀土金属离子与多氨基多羧酸类配体(EDTA, DCTA)螯合物和Keggin、Anderson型多金属氧酸盐为基础单元,合成并表征了5个未见文献报道的多金属氧酸盐基无机-有机杂化化合物。
[Ce_3(HEDTA)_2(H_2O)9][Cr(OH)_6Mo_6O_(18)]·13H_2O (19)
(NH_4)_2[Y_2(H_2DCTA)_2(H_2O)_(12)][SiW_(12)O_(40)]·10H_2O (20)
(NH_4)_2[Sm_2(H_2DCTA)_2(H_2O)_(12)][SiW_(12)O_(40)]·8H_2O (21)
(NH_4)_2[Er_2(H_2DCTA)_2(H_2O)_(12)][SiW_(12)O_(40)]·8H_2O (22)
(NH_4)_2[Eu_2(H_2DCTA)_2(H_2O)_(12)][SiW_(12)O_(40)]·10H_2O (23)
研究发现Ce(Ⅲ)离子具有高配位数(CN.=10),与多氨基多羧酸配体EDTA结合,形成二维配位聚合物层;而在化合物20-23中,Sm、Er、Eu和Y却都是八配位的,而且只与一个配体DCTA上的一个羧基氧原子配位,不与氨基氮原子配位。产生此现象的原因可能有:1)稀土离子的半径的区别。Ce是轻稀土元素,Sm,Eu是中稀土元素,而Y和Er是重稀土元素,它们的半径依次减小。半径的减小带来配位数的降低。2)POM的结构不同。Anderson型多金属氧酸阴离子是扁平型,与Keggin阴离子比较体积较小,在与DCTA共同配位时产生较小的空间位阻;Anderson型多金属氧酸阴离子中每个MoO6八面体有两个端氧原子,配位能力较强。