收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

增强体准连续网状分布钛基复合材料研究

黄陆军  
【摘要】:本文以提高钛基复合材料室温塑性和高温强度为目标,设计出一种增强体呈准连续网状分布的钛基复合材料,并利用原位反应自生技术结合粉末冶金的方法,采用机械混粉加热压烧结技术,基于大尺寸钛合金粉与细小TiB2粉成功制备出增强体准连续网状分布的TiB晶须增强钛基复合材料(TiBw/Ti)。网状分布的增强相有效地提高了增强体的增强效果及基体的韧化效果,因此复合材料表现出优异的室温及高温综合力学性能。采用扫描电镜(SEM)对复合材料中增强体准连续网状分布结构特征、增强体形态与分布、基体组织及裂纹扩展行为进行了研究。采用室温拉伸、室温压缩、超声共振技术及高温拉伸方法对不同状态复合材料强度、塑性、弹性模量、泊松比及高温性能进行了测试及评价,分析了增强体网状分布复合材料的增强机制;并研究了后续热挤压、热轧制、热处理等强化手段对其组织与性能的影响。 采用相同的原料及烧结工艺、不同的球磨工艺,成功制备出了增强体分别呈均匀分布与准连续网状分布的TiBw/Ti复合材料。室温拉伸性能测试表明,增强体呈准连续网状分布较增强体呈均匀分布的烧结态TiBw/Ti复合材料显示出了更优异的强度及塑性。增强体体积分数为8.5%的TiBw/Ti复合材料抗拉强度较纯Ti提高了71%,室温延伸率保持到11.5%。 采用相同工艺制备了系列不同增强体含量的准连续网状结构TiBw/TC4(200μm)复合材料,优化了网状结构参数(网的尺寸及网中局部增强相含量)。其中网的尺寸取决于原始基体颗粒尺寸;网中局部增强相含量取决于原始基体颗粒尺寸和复合材料平均增强相含量。室温拉伸性能及SEM组织分析表明,由于特殊的网状结构,存在最佳的增强体含量及基体颗粒尺寸。其中对于直径为200μm的TC4原始基体颗粒,当复合材料平均增强相含量为5vol.%时,得到最佳的网状结构和综合性能。在网状结构中,除了观察到大量的棒状晶须,还发现了树枝状、自焊接、机械锁、爪子状等分叉晶须,进一步增加了增强相晶须的增强效果和裂纹阻碍作用。在复合材料冷却过程中,由于β→α相变的体积收缩受到网状结构的限制,促进了网内等轴α相的形成,提高了基体塑性。 原始颗粒尺寸和复合材料平均增强相含量对复合材料拉伸性能有很大影响。当原始颗粒尺寸一定时,随平均增强相含量的提高,复合材料的强度提高,塑性下降;当平均增强相含量一定时,随原始颗粒尺寸的增加,复合材料的强度提高,塑性下降。当原始TC4颗粒尺寸为110μm,复合材料平均增强相含量为8.5vol.%时,烧结态TiBw/TC4复合材料抗拉强度与延伸率分别达到1288MPa和2.6%;当原始TC4颗粒尺寸为200μm,复合材料平均增强相含量为3.5vol.%时,TiBw/TC4复合材料抗拉强度与延伸率分别达到1035MPa和6.5%。网状结构的高效承载能力和梯度界面导致高的界面结合强度是复合材料强化的主要原因;网内基体合金塑性的充分发挥和网中晶须对裂纹的阻碍作用是复合材料塑性提高的主要原因。 断裂研究表明,在复合材料整体断裂之前,网中部分晶须发生折断,并伴随着微裂纹的产生,裂纹在网中扩展过程中受到晶须阻碍作用,裂纹发生分叉,提高了断裂消耗的能量,改善了复合材料的强韧性。 由于网状结构中,局部增强相含量较高,使网状结构具有较高的高温承载能力,同时网中晶须的梯度分布使网与基体的界面结合强度提高,形成高温“晶界强化”效应,导致网状结构TiBw/TC4复合材料表现出更高的高温强度。高温拉伸性能测试表明,以相同的拉伸强度为判据,网状结构TiBw/TC4复合材料的使用温度比TC4合金可以提高150~200℃。 热变形和热处理可以进一步改善复合材料的力学性能。热挤压变形导致基体形变及热处理强化、晶须定向排列和局部增强相含量降低,有效地提高了复合材料的强度和塑性。热处理强化了基体合金,提高了复合材料的强度,但降低了塑性。烧结态TiBw/TC4复合材料经强化热处理后最高抗拉强度可以达到1423MPa。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 曾泉浦;颗粒强化钛基复合材料研究取得新进展[J];钛工业进展;1994年04期
2 廖际常;制作钛基复合材料的最新工艺[J];稀有金属快报;2000年05期
3 ;钛基复合材料的焊接[J];机械工程材料;2001年02期
4 文凡;颗粒弥散钛基复合材料[J];金属功能材料;1997年05期
5 张胜玉;钛基复合材料的焊接[J];焊接技术;2000年05期
6 梁振锋,罗锴,丁燕;颗粒增强钛基复合材料的研究与发展[J];钛工业进展;1998年05期
7 杨志峰,吕维洁,盛险峰,覃业霞,张荻;原位合成钛基复合材料的高温力学性能[J];机械工程材料;2004年03期
8 金公;具有良好高温性能的钛基复合材料[J];兵器材料科学与工程;1992年12期
9 黄金昌;钛基复合材料的红外渗透和连接[J];钛工业进展;1994年06期
10 杨柯,周朝惠,李冬法;钛合金的热塑性与钛基复合材料的加氢制备[J];稀有金属材料与工程;1997年01期
11 杨志峰,吕维洁,覃业霞,张荻;石墨添加对原位合成钛基复合材料高温力学性能的影响[J];复合材料学报;2004年05期
12 赵文龙;钛基复合材料阀门[J];材料工程;1991年03期
13 毛小南,曾泉浦;颗粒强化钛基复合材料的氧化特性[J];稀有金属材料与工程;1997年01期
14 邓超,赵永庆,曾立英,张鹏省;颗粒增强低成本钛基复合材料[J];钛工业进展;2004年01期
15 杨玉坤;钛基复合材料[J];材料导报;1990年08期
16 罗国珍;钛基复合材料的研究与发展[J];稀有金属材料与工程;1997年02期
17 ;用基体-涂层纤维法生产钛基复合材料[J];金属功能材料;1996年06期
18 曲选辉,肖平安,祝宝军,秦明礼;高温钛合鑫和颗粒增强钛基复合材料的研究和发展[J];稀有金属材料与工程;2001年03期
19 吴全兴;钛基复合材料[J];稀有金属快报;2001年09期
20 张小明;汽车发动机排气门用钛基复合材料[J];钛工业进展;2001年01期
中国重要会议论文全文数据库 前10条
1 张荻;吕维洁;覃继宁;王立强;陈一飞;;原位自生钛基复合材料界面研究[A];2011中国材料研讨会论文摘要集[C];2011年
2 张荻;吕维洁;覃继宁;张国定;吴人洁;;原位自生钛基复合材料的研究[A];中国空间科学学会空间材料专业委员会’2004学术交流会论文集[C];2004年
3 张荻;吕维洁;覃继宁;吴人洁;;原位自生钛基复合材料的研究[A];中国复合材料学会2003年复合材料学术年会论文集[C];2003年
4 张荻;吕维洁;张小农;吴人洁;;原位自生钛基复合材料的制备、微观结构与力学性能[A];西部大开发 科教先行与可持续发展——中国科协2000年学术年会文集[C];2000年
5 曾立英;毛小南;戚运莲;张鹏省;张廷杰;;TiC粒子增强钛基复合材料的显微组织与性能研究[A];第九届材料科学与合金加工学术会议专刊论文集[C];2004年
6 王玉敏;符跃春;石南林;张德志;杨锐;;磁控溅射法制备SiC(f)/Ti-6Al-4V先驱丝及其拉伸性能研究[A];复合材料:生命、环境与高技术——第十二届全国复合材料学术会议论文集[C];2002年
7 李棣泉;梁振锋;张甫政;罗锴;昌春华;斯淑萍;;Ti-Ni-Mo-Cu-Cr-C系反应生成颗粒增强钛基复合材料[A];中国有色金属学会第三届学术会议论文集——科学技术论文部分[C];1997年
8 王敏敏;吕维洁;覃继宁;张荻;计波;朱峰;;原位合成TiB和TiC增强钛基复合材料的超塑变形行为及机理研究[A];2004年中国材料研讨会论文摘要集[C];2004年
9 王敏敏;罗月新;计波;朱峰;吕维洁;张荻;;原位自生钛基复合材料的产业化分析[A];节能环保 和谐发展——2007中国科协年会论文集(一)[C];2007年
10 陈丽芳;刘咏;;稀土元素的添加对原位生成Ti-TiC-TiB复合材料抗磨损性能的影响[A];第五届海峡两岸粉末冶金技术研讨会论文集[C];2004年
中国博士学位论文全文数据库 前10条
1 卢俊强;原位自生钛基复合材料的热氢处理研究[D];上海交通大学;2010年
2 肖旅;原位自生耐热钛基复合材料的高温性能研究[D];上海交通大学;2010年
3 黄陆军;增强体准连续网状分布钛基复合材料研究[D];哈尔滨工业大学;2010年
4 孙曙宇;热处理以及等温压缩过程中TC18钛基复合材料组织性能研究[D];上海交通大学;2013年
5 李九霄;(TiB+La_2O_3)增强高温钛基复合材料组织和性能研究[D];上海交通大学;2013年
6 郭相龙;变形量对(TiB+La_2O_3)/Ti复合材料组织结构及力学性能影响的研究[D];上海交通大学;2013年
7 杨志峰;多元增强钛基复合材料的微结构及性能研究[D];上海交通大学;2007年
8 毛小南;TiC颗粒增强钛基复合材料的内应力对材料机械性能的影响[D];西北工业大学;2004年
9 马凤仓;热加工对原位自生钛基复合材料组织和力学性能影响的研究[D];上海交通大学;2006年
10 任淮辉;复合材料微观组织结构的计算机设计[D];兰州理工大学;2009年
中国硕士学位论文全文数据库 前10条
1 韩超;生物医用钛基复合材料的研究[D];昆明理工大学;2012年
2 王沛培;原位自生7715D钛基复合材料等轴与层片组织力学性能研究[D];上海交通大学;2010年
3 张盟;网状结构TiBw/Ti60复合材料制备及热处理研究[D];哈尔滨工业大学;2011年
4 马志军;钛基复合材料热残余应力的数值模拟[D];西北工业大学;2002年
5 刘浩;自生(TiB+TiC)混杂增强高温钛基复合材料的制备及组织性能研究[D];哈尔滨工业大学;2013年
6 胡加瑞;热加工对TiC颗粒增强钛基复合材料组织与性能的影响[D];中南大学;2011年
7 宋杰;热氢处理对(TiB+TiC)/Ti-6Al-4V复合材料微观组织和力学性能的影响[D];上海交通大学;2011年
8 吴芳;(TiC+TiB)增强高温钛基复合材料的组织性能研究[D];哈尔滨工业大学;2011年
9 宋晓青;低含量TiBw增强钛基复合材料组织与性能研究[D];哈尔滨工业大学;2013年
10 张珍桂;耐热钛基复合材料(TiB+La_2O_3)/Ti的微结构及力学性能研究[D];上海交通大学;2010年
中国重要报纸全文数据库 前2条
1 郑丽;钛合金项目研究取得显著进展[N];科技日报;2004年
2 记者陈岩;探讨钛材应用 推动钛业发展[N];中国有色金属报;2009年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978