硅基锑化铟薄膜的制备与光电性能研究
【摘要】:InSb基化合物半导体材料具有较高的室温电子迁移率,在电场作用下具有优异的电子输运性能。InSb还具有较小的禁带宽度,是制作3~5μm红外探测器和成像系统的重要材料。另外,InSb及其合金的光发射与一些主要气体如CO、CO2等的基本吸收线相匹配,因而也可使用InSb基发光器件和探测器件制成气体传感系统。近年来,通过在硅基上生长高性能的InSb结构,充分利用硅基材料与InSb材料的优点,实现了功能器件和电路的融合,颇具工程价值而成为纳米尺度器件发展的重要方向。本文利用磁控溅射技术在Si衬底上生长了InSb薄膜和InSb/SiO2/Si XOI结构,综合分析了InSb薄膜和InSb/SiO2/Si异质结的晶体结构,并结合光学和电学性能表征,对材料的结构与性能之间的关系进行了深入研究。论文的主要研究内容包括:
首先使用真空电弧炉制备磁控溅射用的InSb靶材,采用调节靶材成分的方法来实现溅射InSb薄膜的正常化学计量比。研究了不同溅射工艺对InSb薄膜结构和性能的影响。随着溅射功率的增大,InSb薄膜由非晶态向晶态转变,晶粒尺寸增大,结晶性变好;当溅射压强逐渐增大时,晶粒尺寸逐渐变小,结晶性变差。在溅射压强为0.6Pa的InSb薄膜中出现了富In的现象。
采用快速热退火和常规热退火两种方式对沉积态InSb薄膜进行了退火,并研究了不同退火工艺对薄膜结构和性能的影响。采用快速热退火工艺时,随着退火温度的增加薄膜结晶性变好,晶粒尺寸随之增大,(111)面的择优取向性随之增强。InSb薄膜的透过率随温度的升高而降低,当退火温度从300℃上升到500℃时,InSb的光学带隙从0.22eV红移至0.19eV。不同温度退火的薄膜霍尔测量结果表明,77K和300K下薄膜均为n型,薄膜的迁移率和载流子浓度随着退火温度的上升均有不同程度的增加。在400℃温度下,随着快速热退火时间的增加薄膜晶粒尺寸增大,光学带隙随退火时间的增加逐渐减小。77K和300K下薄膜迁移率均随退火时间的增加而增加,300K下薄膜的载流子浓度随退火时间的增加先增加后减小。与快速热退火工艺相比,采用常规热退火工艺进行退火时,随着退火温度的增加,在相同温度下常规热退火的晶粒尺寸均大于快速热退火的晶粒尺寸。当退火温度从200℃上升到400℃时,薄膜的光学带隙从0.22eV红移至0.2eV。在500℃常规热退火的晶体质量较差,薄膜的光学带隙增大到0.35eV。对比两种不同的退火方式可知,InSb薄膜经常规热退火后的迁移率除200℃退火的样品外,其余皆低于经快速热退火处理后的样品。在400℃温度下,随着常规热退火时间的增加InSb薄膜晶粒尺寸增大,薄膜的光学带隙从0.24eV红移移至0.2eV附近。薄膜的迁移率随退火时间的延长先增加后减小,载流子浓度随退火时间的延长而逐渐增大。分析了快速热退火和常规热退火对晶化过程的影响并计算了快速热退火和常规热退火的晶化激活能,分别为131.5kJ/mol和66.9kJ/mol。
利用磁控溅射生长了InSb/SiO2/Si XOI结构,通过透射电镜分析可知,InSb层的厚度为35nm,退火后的薄膜为多晶结构,晶粒尺寸约为13nm。采用高分辨透射技术在退火后的InSb薄膜中观察到了[111]、[220]、[311]三种晶体取向的晶粒,与XRD谱图中衍射峰分析的结果相一致。通过高分辨透射电镜对InSb/SiO2/Si XOI的界面进行分析后可知SiO2层的厚度为4nm。超薄InSb薄膜退火后受纳米尺度晶粒的量子限域效应的影响,光学带隙与InSb晶体的能带带隙值(0.18eV)相比蓝移了0.084eV,带隙值为0.264eV。从I-V特性测量可知,InSb/SiO2/Si XOI结构在室温下表现出明显的二极管整流特性,室温下的开启电压为0.35V,77K下的开启电压为0.55V。分析300K时InSb/SiO2/Si XOI的电子输运机制可知,当电压小于0.35V时为扩散和热电子发射复合机制;电压在0.35-3V之间时为热电子发射机制和空间电荷局域两种模式共同作用;电压大于3V时为空间电荷局域模型机制。
|
|
|
|
1 |
闫进峰,王捷婷;薄膜电容式压力传感器[J];遥测遥控;1998年01期 |
2 |
刘中其;曾平;刘欣;冉建桥;蒋和全;;二十四所混合集成电路技术发展历程与展望[J];微电子学;2008年01期 |
3 |
徐敏生
,陈国平;薄膜传感器与薄膜工艺[J];电子器件;1986年04期 |
4 |
刘刚,王从香,符鹏;AlN基板表面处理对薄膜附着力的影响[J];电子元件与材料;2005年09期 |
5 |
尤大纬;宽束考夫曼离子源的原理及其使用[J];电工电能新技术;1993年01期 |
6 |
饶雨生;唐敦乙;刘效增;沈伯礼;;轴向场宽束离子源研究[J];西安交通大学学报;1990年01期 |
7 |
江鉴,张仕国;硅液相外延生长的晶向自动偏离现象[J];上海航天;1999年01期 |
8 |
王庆章;赵庚申;许盛之;王瑜;;薄膜工艺中的系统仿真研究[J];南开大学学报(自然科学版);2006年06期 |
9 |
李昕欣,陈跃;直接淀积式Ge—Au薄膜应变计的工艺研究[J];仪表技术与传感器;1992年03期 |
10 |
过壁君;薄膜磁阻传感器及其应用[J];电子元件与材料;1994年05期 |
11 |
武文;刘大福;;新一代星用多通道光导长波线列器件的多层陶瓷封装设计[J];光子学报;2010年12期 |
12 |
李勇;王江涛;;S波段小型Lange耦合器的应用设计[J];微波学报;2011年05期 |
13 |
李林,李宏成,赵柏儒,王瑞兰,张鹰子;溅射法制备Y(Gd)Ba_2Cu_3O_7高温超导薄膜工艺,膜的结构及超导性能研究[J];中国科学基金;1996年01期 |
14 |
李月娟;;热打印技术及其发展趋势[J];中国高新技术企业;2011年18期 |
15 |
;TDK推出厚度仅0.3mm的薄膜带通滤波器[J];电子与电脑;2008年10期 |
16 |
;微波功率管中的薄膜工艺[J];真空电子技术;1967年02期 |
17 |
饶能高,奚日辉,李华清,王利,蔡新霞;薄膜工艺制备乳酸传感器[J];仪表技术与传感器;2004年12期 |
18 |
赵透玲;任丙彦;赵龙;王文静;;射频磁控溅射ITO薄膜中沉积温度对膜特性影响[J];光电子.激光;2005年12期 |
19 |
冯侨华;施云波;殷景华;郭建英;;磁控技术成膜的工艺研究与微观表征分析[J];科技信息;2007年02期 |
20 |
陈祝;张树人;杜善义;杨成韬;陈富贵;董加和;孙明霞;;c轴择优取向ZnO薄膜RF溅射工艺研究[J];压电与声光;2007年03期 |
|