收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

基于稀疏表示的高光谱图像异常检测算法及其优化研究

孙邱鹏  
【摘要】:高光谱遥感作为一种探测地物信息的综合性观测技术,有着其他技术手段无法比拟的优势,而异常检测作为高光谱遥感的重要应用,一方面可以作为检测结果直接输出,另一方面也可以作为其他应用的预处理手段,因此在军事侦察、矿产探测、环境监测等方面被广泛应用。本论文主要研究高光谱图像的稀疏特性,在此基础上分析异常的稀疏特征,并探究相应的异常检测方法。论文从信号的稀疏表示理论出发,描述了信号的稀疏表示数学模型,并给出了一般的稀疏系数求解方法。然后在稀疏表示理论的基础上,探究高光谱图像的稀疏特性,给出了高光谱数据稀疏表示模型,同时分析了异常点在该稀疏表示模型基础下的相关特性。最后将单个像元的稀疏性扩展到整幅图像的低秩性,给出了高光谱图像的低秩与稀疏矩阵分解模型,并对提出的两种模型进行了比较。在上述理论分析及模型表征的基础上,重点研究高光谱图像在稀疏表示下的异常检测方法。目前利用稀疏表示进行高光谱异常检测的算法主要有两种:局部稀疏差异指数算法和稀疏得分估计算法。局部稀疏差异指数算法利用异常与背景在字典集上稀疏表示系数的分布差异进行异常检测,但其算法性能受限于窗口参数。稀疏得分估计算法通过字典集中各原子的利用率来反演异常信息,从另一个角度完成了对图像异常信息的挖掘。论文根据高光谱图像的低秩与稀疏矩阵分解模型得到低秩背景矩阵和稀疏异常矩阵,利用稀疏矩阵直接获取异常信息,而低秩矩阵则被应用于改进算法中。通过对上述两种基于稀疏表示的算法以及传统的RX异常检测算法进行改进,实现对高光谱图像信息的充分利用。最后考虑高光谱图像的其他典型特征,对异常检测算法从不同角度进行优化。首先在局部稀疏差异指数算法中利用压缩采样匹配追踪算法代替正交匹配追踪算法,在保证一定检测率的条件下实现运算效率的提升。其次针对稀疏得分估计算法检测精度较低的问题,将非负约束引入高光谱图像稀疏表示模型,提出非负稀疏得分估计算法,提升算法的检测精度。最后,根据高光谱图像的非线性特性,利用核函数对算法进行改进,使其能够对非线性数据进行计算,并且算法的稳定性得到进一步的提高。实验结果表明,相较于原始算法,优化后的算法在检测精度、速度、稳定性上分别获得相应的提升。


知网文化
【相似文献】
中国期刊全文数据库 前16条
1 Fang LI;Jia SHENG;San-yuan ZHANG;;基于稀疏表示的拉普拉斯稀疏字典图像分类(英文)[J];Frontiers of Information Technology & Electronic Engineering;2017年11期
2 黄宏图;毕笃彦;侯志强;胡长城;高山;查宇飞;库涛;;基于稀疏表示的视频目标跟踪研究综述[J];自动化学报;2018年10期
3 刘嘎琼;;改进稀疏表示的人脸识别在高校管理中的应用[J];计算机与数字工程;2018年11期
4 余庆辉;朱晗琰;吴海霞;戈晓玲;潘逸炜;;基于类内稀疏表示的人脸识别[J];科技展望;2015年32期
5 滕升华;商胜楠;王芳;赵增顺;;一种基于复合稀疏表示的阿尔茨海默病的诊断方法[J];生物医学工程研究;2016年01期
6 黄宏图;毕笃彦;高山;查宇飞;侯志强;;基于局部敏感核稀疏表示的视频跟踪[J];电子与信息学报;2016年04期
7 张保庆;穆志纯;曾慧;;基于非负稀疏表示的遮挡人耳识别[J];计算机辅助设计与图形学学报;2014年08期
8 张石清;赵小明;楼宋江;闯跃龙;郭文平;陈盈;;一种局部敏感的核稀疏表示分类算法[J];光电子.激光;2014年09期
9 陈思宝;许立仙;罗斌;;基于多重核的稀疏表示分类[J];电子学报;2014年09期
10 李映;张艳宁;许星;;基于信号稀疏表示的形态成分分析:进展和展望[J];电子学报;2009年01期
11 王威;朱宗玖;陆俊;;基于字典学习和局部约束的稀疏表示人脸识别[J];电脑知识与技术;2018年05期
12 韦道知;黄树彩;赵岩;庞策;;非负谱稀疏表示的高光谱成像中的异常检测[J];红外与激光工程;2016年S2期
13 王科平;杨赞亚;恩德;;基于分类冗余字典稀疏表示的图像压缩方法[J];计算机工程;2017年09期
14 王学军;王文剑;曹飞龙;;基于自步学习的加权稀疏表示人脸识别方法[J];计算机应用;2017年11期
15 黄少煌;黄立勤;;改进的两阶段协作稀疏表示分类器[J];南阳理工学院学报;2016年02期
16 胡正平;高红霄;赵淑欢;;基于低秩分解的联合动态稀疏表示多观测样本分类算法[J];电子学报;2015年03期
中国重要会议论文全文数据库 前10条
1 樊亚翔;孙浩;周石琳;邹焕新;;基于元样本稀疏表示的多视角目标识别[A];2013年中国智能自动化学术会议论文集(第五分册)[C];2013年
2 杨宝;朱启兵;黄敏;;基于非负矩阵分解一稀疏表示分类的玻璃缺陷图像识别[A];第24届中国控制与决策会议论文集[C];2012年
3 田野;张立新;严涛;杨志梅;张茁;;基于稀疏表示的北斗导航卫星预失真滤波器设计方法[A];第九届中国卫星导航学术年会论文集——S08 测试评估技术[C];2018年
4 肖琼;黄永言;;稀疏表示在脑电信号处理中的应用研究现状[A];人-机-环境系统工程创立30周年纪念大会暨第十一届人-机-环境系统工程大会论文集[C];2011年
5 赵雪峰;孙成禹;;基于稀疏表示的地震多属性融合[A];2016中国地球科学联合学术年会论文集(十九)——专题40:油气田与煤田地球物理勘探[C];2016年
6 廖佳俊;刘志刚;蔡尚;姜江军;;基于非负—平滑约束的高光谱稀疏表示目标检测算法研究[A];国家安全地球物理丛书(十二)——地球物理与信息感知[C];2016年
7 蒙红英;柴昱洲;韩宇;;一种基于稀疏表示的JPEG-LS改进算法[A];第四届高分辨率对地观测学术年会论文集[C];2017年
8 柴汉超;郭翌;汪源源;曹万里;孙福康;;基于多尺度稀疏表示分割肾上腺肿瘤CT图像[A];仪器仪表学报(2015(增刊)第36卷)[C];2015年
9 余力;郭翌;汪源源;陈萍;;基于超声心动图序列的胎儿左心室分割[A];仪器仪表学报(2015(增刊)第36卷)[C];2015年
10 林哲;闫敬文;袁野;;基于稀疏表示和PCNN的多模态图像融合[A];创新驱动与转型发展,推动汕头腾飞——汕头市科协第七届学术年会优秀论文集[C];2014年
中国博士学位论文全文数据库 前10条
1 王秀红;基于稀疏表示的波达方向估计方法研究[D];哈尔滨工业大学;2017年
2 张岩;基于稀疏表示的油气地震勘探数据重建与去噪方法研究[D];东北石油大学;2018年
3 程增飞;基于压缩感知的阵列信号处理技术研究[D];西安电子科技大学;2017年
4 赵永红;基于稀疏表示的阵列信号空间谱估计方法研究[D];西安电子科技大学;2017年
5 任博;基于稀疏表示和流形学习的SAR图像分类算法研究[D];西安电子科技大学;2017年
6 王伟;基于帧级和段级稀疏表示的说话人识别研究[D];哈尔滨工业大学;2016年
7 涂淑琴;基于稀疏表示的RGB-D图像特征学习研究与应用[D];华南农业大学;2016年
8 李窦哲;基于L-DACS1数据链的航空电信网协同传输关键技术研究[D];天津大学;2017年
9 石保顺;基于自适应稀疏表示的压缩感知及相位恢复算法研究[D];燕山大学;2017年
10 刘梓;基于稀疏表示与鉴别分析算法的人脸图像分类研究[D];南京理工大学;2016年
中国硕士学位论文全文数据库 前10条
1 徐琴;基于压缩感知的交通标志识别[D];长安大学;2018年
2 阚丹会;基于结构稀疏的影像遗传学数据关联分析[D];长安大学;2018年
3 孟美玲;基于稀疏表示的高光谱图像目标检测研究[D];哈尔滨工程大学;2018年
4 王艳然;基于稀疏表示的遥感目标分类识别研究[D];长沙理工大学;2017年
5 张佳娥;基于稀疏表示的图像融合算法[D];长沙理工大学;2017年
6 孙邱鹏;基于稀疏表示的高光谱图像异常检测算法及其优化研究[D];哈尔滨工业大学;2018年
7 杨洪刚;基于稀疏表示和压缩感知的旋转机械故障识别方法[D];华南理工大学;2018年
8 沈子钰;压缩感知在超宽带信道估计中的应用研究[D];杭州电子科技大学;2018年
9 杨世诚;基于稀疏表示的低质量人脸图像识别的研究[D];华东师范大学;2018年
10 王博;基于超像素和稀疏表示的目标跟踪研究[D];河南师范大学;2018年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978