收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

基于自适应稀疏表示的压缩感知及相位恢复算法研究

石保顺  
【摘要】:高效地获取、处理及传输信息对于科技进步至关重要。作为信息的载体,图像在传统采集过程中通常需要以高采样频率采样才能够被完美重建。然而,较多的测量数据既增加了采样端的复杂性,又给数据的传输、处理与存储增加了压力。如何利用少量测量数据重建高质量图像是一大挑战。为解决该问题,本文利用自适应稀疏表示技术研究从信息缺失严重的测量数据中重建高质量图像的算法,重点研究有效的压缩感知核磁共振成像(Compressed Sensing Magnetic Resonance Imaging,CSMRI)与相位恢复(Phase Retrieval,PR)算法。具体研究内容及创新性成果如下:首先,为解决现有CSMRI算法在低采样率下重建质量低的问题,提出基于一阶逼近字典学习的CSMRI算法及融合局部稀疏性、即插即用先验的CSMRI算法。字典学习方法在图像重建中至关重要,本文对传统字典学习代价函数中的字典与系数的乘积项进行一阶逼近提出了能够有效捕获图像信息的一阶逼近字典学习方法。此外,利用该方法提出了有效的CSMRI算法。根据图像与其去噪结果应尽可能接近的原理,构建了即插即用正则化模型。将该模型引入到基于一阶逼近字典学习的CSMRI中以利用多种先验知识进行图像重建,实验验证了算法的有效性。其次,为解决低过采样率下现有PR算法重建质量低的问题,提出了基于紧标架、自适应正交字典的PR算法。传统相位恢复的测量数据包含关于待重建图像较少的结构信息,为保证重建高质量图像需利用额外的先验信息进行重建。为此,提出利用图像在TIHP(Translation Invariant Haar Pyramid)紧标架下的稀疏性进行相位恢复的算法。由于紧标架的非自适应性,上述算法在更低的过采样率下重建质量不高。为解决该问题,提出利用自适应字典进行相位恢复的算法。该算法将字典限制为正交结构以降低算法计算复杂度,通过傅里叶模值联合优化字典与图像,实验验证了算法的有效性。再次,提出迁移正交稀疏变换学习算法,并利用该方法进行相位恢复。由于相位恢复的初始估计图像通常为随机的,初始迭代的估计图像包含大量噪声,将该估计图像的图像块作为训练样本不利于字典学习。为解决该问题,构造了稀疏变换正则项以衡量待学习稀疏变换与已知稀疏变换的相似性。提出迁移正交稀疏变换学习方法,并利用该学习方法构造了PR优化问题。采用交替方向乘子法对该问题进行了有效求解。最后,面向编码衍射图案(Coded Diffraction Pattern,CDP)采样模型提出基于紧标架学习、组稀疏字典学习的PR算法以解决现有算法在CDP数量较少情况下重建质量低、抗噪性能差的问题。针对高斯噪声污染的情况,提出利用非自然稀疏表示模型、紧标架学习模型进行图像重建的PR算法。该算法利用非自然l0稀疏度量函数衡量图像在自适应紧标架下的稀疏性以抑制估计图像中的噪声成分。针对泊松噪声,提出利用多种先验知识进行图像重建的PR算法。将局部稀疏性、非局部相似性通过基于组的稀疏表示模型引入到图像重建中,并结合图像在梯度域的稀疏性进行相位恢复。多种先验知识的利用使得该算法能够通过少量CDP有效重建图像。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 张新鹏;王朔中;;基于稀疏表示的密写编码[J];电子学报;2007年10期
2 李映;张艳宁;许星;;基于信号稀疏表示的形态成分分析:进展和展望[J];电子学报;2009年01期
3 赵瑞珍;王飞;罗阿理;张彦霞;;基于稀疏表示的谱线自动提取方法[J];光谱学与光谱分析;2009年07期
4 杨蜀秦;宁纪锋;何东健;;基于稀疏表示的大米品种识别[J];农业工程学报;2011年03期
5 史加荣;杨威;魏宗田;;基于非负稀疏表示的人脸识别[J];计算机工程与设计;2012年05期
6 高志荣;熊承义;笪邦友;;改进的基于残差加权的稀疏表示人脸识别[J];中南民族大学学报(自然科学版);2012年03期
7 朱杰;杨万扣;唐振民;;基于字典学习的核稀疏表示人脸识别方法[J];模式识别与人工智能;2012年05期
8 耿耀君;张军英;袁细国;;一种基于稀疏表示系数的特征相关性测度[J];模式识别与人工智能;2013年01期
9 张疆勤;廖海斌;李原;;基于因子分析与稀疏表示的多姿态人脸识别[J];计算机工程与应用;2013年05期
10 李正周;王会改;刘梅;丁浩;金钢;;基于形态成分稀疏表示的红外小弱目标检测[J];弹箭与制导学报;2013年04期
11 胡正平;赵淑欢;李静;;基于块稀疏递推残差分析的稀疏表示遮挡鲁棒识别算法研究[J];模式识别与人工智能;2014年01期
12 陈思宝;赵令;罗斌;;局部保持的稀疏表示字典学习[J];华南理工大学学报(自然科学版);2014年01期
13 王铿;张重阳;齐朗晔;;基于核距离的稀疏表示的交通标识识别[J];计算机应用与软件;2014年03期
14 单建华;张晓飞;;稀疏表示人脸识别的关键问题分析[J];安徽工业大学学报(自然科学版);2014年02期
15 栾悉道;王卫威;谢毓湘;张芯;李琛;;非线性稀疏表示理论及其应用[J];计算机科学;2014年08期
16 杨荣根;任明武;杨静宇;;基于稀疏表示的人脸识别方法[J];计算机科学;2010年09期
17 郑轶;蔡体健;;稀疏表示的人脸识别及其优化算法[J];华东交通大学学报;2012年01期
18 段菲;章毓晋;;一种面向稀疏表示的最大间隔字典学习算法[J];清华大学学报(自然科学版);2012年04期
19 李仲生;李仁发;蔡则苏;赵乘麟;;稀疏表示下的非监督显著对象提取[J];电子学报;2012年06期
20 段菲;章毓晋;;基于多尺度稀疏表示的场景分类[J];计算机应用研究;2012年10期
中国重要会议论文全文数据库 前3条
1 何爱香;刘玉春;魏广芬;;基于稀疏表示的煤矸界面识别研究[A];虚拟运营与云计算——第十八届全国青年通信学术年会论文集(上册)[C];2013年
2 樊亚翔;孙浩;周石琳;邹焕新;;基于元样本稀疏表示的多视角目标识别[A];2013年中国智能自动化学术会议论文集(第五分册)[C];2013年
3 葛凤翔;任岁玲;郭鑫;郭良浩;孙波;;微弱信号处理及其研究进展[A];中国声学学会水声学分会2013年全国水声学学术会议论文集[C];2013年
中国博士学位论文全文数据库 前10条
1 李进明;基于稀疏表示的图像超分辨率重建方法研究[D];重庆大学;2015年
2 王亚宁;基于信号稀疏表示的电机故障诊断研究[D];河北工业大学;2014年
3 姚明海;视频异常事件检测与认证方法研究[D];东北师范大学;2015年
4 黄国华;蛋白质翻译后修饰位点与药物适应症预测方法研究[D];上海大学;2015年
5 王瑾;基于稀疏表示的数据收集、复原与压缩研究[D];北京工业大学;2015年
6 王文卿;基于融合框架与稀疏表示的遥感影像锐化[D];西安电子科技大学;2015年
7 解虎;高维小样本阵列自适应信号处理方法研究[D];西安电子科技大学;2015年
8 秦振涛;基于稀疏表示及字典学习遥感图像处理关键技术研究[D];成都理工大学;2015年
9 薛明;基于稀疏表示的在线目标跟踪研究[D];上海交通大学;2014年
10 孙乐;空谱联合先验的高光谱图像解混与分类方法[D];南京理工大学;2014年
中国硕士学位论文全文数据库 前10条
1 王道文;基于稀疏表示的目标跟踪算法研究[D];华南理工大学;2015年
2 李哲;基于稀疏表示和LS-SVM的心电信号分类[D];河北大学;2015年
3 孙雪青;Shearlet变换和稀疏表示相结合的甲状腺结节图像融合[D];河北大学;2015年
4 吴丽璇;基于稀疏表示的微聚焦X射线图像去噪方法[D];华南理工大学;2015年
5 赵孝磊;基于图像分块稀疏表示的人脸识别算法研究[D];南京信息工程大学;2015年
6 黄志明;基于辨别式稀疏字典学习的视觉追踪算法研究[D];华南理工大学;2015年
7 张铃华;非约束环境下的稀疏表示人脸识别算法研究[D];南京信息工程大学;2015年
8 贺妍斐;基于稀疏表示与自适应倒易晶胞的遥感图像复原方法研究[D];南京信息工程大学;2015年
9 杨烁;电能质量扰动信号的稀疏表示/压缩采样研究[D];西南交通大学;2015年
10 应艳丽;基于低秩稀疏表示的目标跟踪算法研究[D];西南交通大学;2015年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978