收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

基于稀疏表示的高光谱图像目标检测研究

孟美玲  
【摘要】:高光谱遥感图像的成像方式不同于常规的光学遥感成像,其将图像的空间信息与光谱信息整合成为三维立方体图像的形式。相较于多光谱图像而言,高光谱遥感图像包含更多的光谱波段信息。利用地物间成百上千的光谱信息的细微差别可以实现目标识别以及地物分类。根据是否需要地物的先验光谱信息可以将目标检测区分为有监督的目标检测和非监督目标检测。本文主要将高光谱遥感成像技术的基础原理与稀疏表示模型相结合,将原始信号利用过完备字典进行线性展开。通过正交匹配追踪算法进行稀疏系数的求解并且重建原始信号。根据不同地物有独特的光谱反射曲线,设计判别函数并选取合适的阈值对目标与背景进行区分。本文的主要研究内容如下:首先,经典的基于稀疏表示目标检测算法中过完备字典所包含的训练样本数目与种类都很少,对目标检测有一定的影响。针对于基于传统字典的目标检测算法中存在的缺陷,本文通过增加过完备字典中所包含的目标训练样本的数目来实现原始字典的增殖,使目标检测的精度得以提升,通过与原始稀疏表示算法进行对比,验证了此算法的有效性。其次,针对传统基于稀疏表示的目标检测算法求解稀疏向量耗时过长以及在检测过程中只考虑高光谱图像的光谱信息,并没有考虑到其空间信息的问题,本文通过转变稀疏向量的求解思路,实现目标与背景稀疏向量分步求解,以及在检测过程中对原始的模型进行改进,添加空间信息来提高目标检测的精度并加速算法进行目标检测时间。最后,由于过完备字典的构造是直接从高光谱图像中进行获取的,存在不确定性因素且无法实现对混合像元的准确检测。针对以上问题,提出基于字典重构的高光谱图像混合像元目标检测算法。该算法利用无监督方法进行过完备字典的构造,确保过完备字典中包含部分目标像元的光谱信息,同时引入二元对立假设模型实现对高光谱图像中混合像元目标的检测。将其与稀疏表示模型相结合实现高光谱遥感图像的目标检测。通过进行对比实验可以看出,本文所提出的创新算法可以得到更高的检测精度。


知网文化
【相似文献】
中国期刊全文数据库 前16条
1 Fang LI;Jia SHENG;San-yuan ZHANG;;基于稀疏表示的拉普拉斯稀疏字典图像分类(英文)[J];Frontiers of Information Technology & Electronic Engineering;2017年11期
2 黄宏图;毕笃彦;侯志强;胡长城;高山;查宇飞;库涛;;基于稀疏表示的视频目标跟踪研究综述[J];自动化学报;2018年10期
3 刘嘎琼;;改进稀疏表示的人脸识别在高校管理中的应用[J];计算机与数字工程;2018年11期
4 余庆辉;朱晗琰;吴海霞;戈晓玲;潘逸炜;;基于类内稀疏表示的人脸识别[J];科技展望;2015年32期
5 滕升华;商胜楠;王芳;赵增顺;;一种基于复合稀疏表示的阿尔茨海默病的诊断方法[J];生物医学工程研究;2016年01期
6 黄宏图;毕笃彦;高山;查宇飞;侯志强;;基于局部敏感核稀疏表示的视频跟踪[J];电子与信息学报;2016年04期
7 张保庆;穆志纯;曾慧;;基于非负稀疏表示的遮挡人耳识别[J];计算机辅助设计与图形学学报;2014年08期
8 张石清;赵小明;楼宋江;闯跃龙;郭文平;陈盈;;一种局部敏感的核稀疏表示分类算法[J];光电子.激光;2014年09期
9 陈思宝;许立仙;罗斌;;基于多重核的稀疏表示分类[J];电子学报;2014年09期
10 李映;张艳宁;许星;;基于信号稀疏表示的形态成分分析:进展和展望[J];电子学报;2009年01期
11 王威;朱宗玖;陆俊;;基于字典学习和局部约束的稀疏表示人脸识别[J];电脑知识与技术;2018年05期
12 韦道知;黄树彩;赵岩;庞策;;非负谱稀疏表示的高光谱成像中的异常检测[J];红外与激光工程;2016年S2期
13 王科平;杨赞亚;恩德;;基于分类冗余字典稀疏表示的图像压缩方法[J];计算机工程;2017年09期
14 王学军;王文剑;曹飞龙;;基于自步学习的加权稀疏表示人脸识别方法[J];计算机应用;2017年11期
15 黄少煌;黄立勤;;改进的两阶段协作稀疏表示分类器[J];南阳理工学院学报;2016年02期
16 胡正平;高红霄;赵淑欢;;基于低秩分解的联合动态稀疏表示多观测样本分类算法[J];电子学报;2015年03期
中国重要会议论文全文数据库 前10条
1 樊亚翔;孙浩;周石琳;邹焕新;;基于元样本稀疏表示的多视角目标识别[A];2013年中国智能自动化学术会议论文集(第五分册)[C];2013年
2 杨宝;朱启兵;黄敏;;基于非负矩阵分解一稀疏表示分类的玻璃缺陷图像识别[A];第24届中国控制与决策会议论文集[C];2012年
3 田野;张立新;严涛;杨志梅;张茁;;基于稀疏表示的北斗导航卫星预失真滤波器设计方法[A];第九届中国卫星导航学术年会论文集——S08 测试评估技术[C];2018年
4 肖琼;黄永言;;稀疏表示在脑电信号处理中的应用研究现状[A];人-机-环境系统工程创立30周年纪念大会暨第十一届人-机-环境系统工程大会论文集[C];2011年
5 赵雪峰;孙成禹;;基于稀疏表示的地震多属性融合[A];2016中国地球科学联合学术年会论文集(十九)——专题40:油气田与煤田地球物理勘探[C];2016年
6 廖佳俊;刘志刚;蔡尚;姜江军;;基于非负—平滑约束的高光谱稀疏表示目标检测算法研究[A];国家安全地球物理丛书(十二)——地球物理与信息感知[C];2016年
7 蒙红英;柴昱洲;韩宇;;一种基于稀疏表示的JPEG-LS改进算法[A];第四届高分辨率对地观测学术年会论文集[C];2017年
8 柴汉超;郭翌;汪源源;曹万里;孙福康;;基于多尺度稀疏表示分割肾上腺肿瘤CT图像[A];仪器仪表学报(2015(增刊)第36卷)[C];2015年
9 余力;郭翌;汪源源;陈萍;;基于超声心动图序列的胎儿左心室分割[A];仪器仪表学报(2015(增刊)第36卷)[C];2015年
10 林哲;闫敬文;袁野;;基于稀疏表示和PCNN的多模态图像融合[A];创新驱动与转型发展,推动汕头腾飞——汕头市科协第七届学术年会优秀论文集[C];2014年
中国博士学位论文全文数据库 前10条
1 王秀红;基于稀疏表示的波达方向估计方法研究[D];哈尔滨工业大学;2017年
2 张岩;基于稀疏表示的油气地震勘探数据重建与去噪方法研究[D];东北石油大学;2018年
3 程增飞;基于压缩感知的阵列信号处理技术研究[D];西安电子科技大学;2017年
4 赵永红;基于稀疏表示的阵列信号空间谱估计方法研究[D];西安电子科技大学;2017年
5 任博;基于稀疏表示和流形学习的SAR图像分类算法研究[D];西安电子科技大学;2017年
6 王伟;基于帧级和段级稀疏表示的说话人识别研究[D];哈尔滨工业大学;2016年
7 涂淑琴;基于稀疏表示的RGB-D图像特征学习研究与应用[D];华南农业大学;2016年
8 李窦哲;基于L-DACS1数据链的航空电信网协同传输关键技术研究[D];天津大学;2017年
9 石保顺;基于自适应稀疏表示的压缩感知及相位恢复算法研究[D];燕山大学;2017年
10 刘梓;基于稀疏表示与鉴别分析算法的人脸图像分类研究[D];南京理工大学;2016年
中国硕士学位论文全文数据库 前10条
1 徐琴;基于压缩感知的交通标志识别[D];长安大学;2018年
2 阚丹会;基于结构稀疏的影像遗传学数据关联分析[D];长安大学;2018年
3 孟美玲;基于稀疏表示的高光谱图像目标检测研究[D];哈尔滨工程大学;2018年
4 王艳然;基于稀疏表示的遥感目标分类识别研究[D];长沙理工大学;2017年
5 张佳娥;基于稀疏表示的图像融合算法[D];长沙理工大学;2017年
6 孙邱鹏;基于稀疏表示的高光谱图像异常检测算法及其优化研究[D];哈尔滨工业大学;2018年
7 杨洪刚;基于稀疏表示和压缩感知的旋转机械故障识别方法[D];华南理工大学;2018年
8 沈子钰;压缩感知在超宽带信道估计中的应用研究[D];杭州电子科技大学;2018年
9 杨世诚;基于稀疏表示的低质量人脸图像识别的研究[D];华东师范大学;2018年
10 王博;基于超像素和稀疏表示的目标跟踪研究[D];河南师范大学;2018年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978