收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

里氏木霉铜代谢相关基因克隆与功能分析

傅科鹤  
【摘要】:木霉菌是土壤中普遍存在的习居菌,在植物病害生物防治和土壤农化污染修复中具有广泛的应用。然而木霉菌在与铜制剂农药协同防治植物病害、与肥料复合使用提高作物产量及修复重金属污染环境中,需要具备良好的铜耐受性或吸附性。因此,研究木霉铜代谢相关基因及其功能,揭示木霉菌耐受、吸附和转运铜的机理,为提高木霉菌在铜胁迫下的防病、修复环境效应奠定理论基础,对构建高效吸附或高耐受铜的工程菌也具有重要意义。本研究以基因组已测序的里氏木霉(Trichoderma reesei)QM6a为原始菌,克隆铜代谢相关基因,并通过改进的农杆菌介导转化技术(ATMT)构建、筛选高吸附铜的里氏木霉突变株,克隆高吸附铜相关基因,在遗传、生物化学和组学的尺度上明确其代谢功能和作用机制。主要的研究内容如下: 1.高吸附铜突变株的构建与筛选 对常规的农杆菌介导(ATMT)转化方法进行了改进,建立了一种高效筛选吸附铜突变株的方法。通过该方法,构建了1664株突变株,并从中筛选到一株高吸附铜突变株AT01,当培养基铜浓度为0.7mM时,AT01铜吸附率达到12.73mg/g(96.1%),而野生株(WT)吸附率仅为5.97mg/g(49.6%)。显微镜观察表明,AT01突变株胞内液泡数量明显多于WT,在铜胁迫下可富集较多的铜离子,胞内多余的铜离子储存在液泡中可减少铜对细胞的毒性作用,进而提高木霉菌对铜的耐受能力。 2. Tad1基因克隆与功能分析 通过反向PCR扩增获得的T-DNA插入片段侧翼序列并通过NCBI比对分析后获得基因Tad1。分析表明,该基因读码框含1533bp碱基,无内含子,在里氏木霉中为单拷贝,编码一个510氨基酸的蛋白,属于COG0420,为酰胺水解酶超家族成员。原核表达产物纯化后,进行酶活测定,结果表明:以腺嘌呤为底物时,酶活性最高,Km为0.66mM。RNA介导基因沉默和过表达分析表明:在1mM铜胁迫下,WT、AT01、过表达子(Ovex-Tad1)及沉默子(RNAi-Tad1)的铜吸附水平分别为7.5、14.1、12.3及4.9mg/g (P值为0.02,T-test)。在同浓度铜胁迫下,通过荧光定量PCR分析了RNAi-Tad1、Ovex-Tad1及AT01、WT中已知的酵母菌铜代谢相关基因的表达水平,结果表明:Trace、Trccs、Tratx、Trcox四个基因在Ovex-Tad1和AT01中均上调表达,而在RNAi-Tad1中,这些基因表达水平与野生株无明显差异。进一步通过HPLC分析WT、AT01、Ovex-Tad1、RNAi-Tad1中可与铜相结合的次黄嘌呤、黄嘌呤产生水平,发现与WT相比,Ovex-Tad1和AT01中两种次生代谢产物的产生均明显增加,而RNAi-Tad1产量低于野生株。上述研究从遗传和生化水平上说明该基因参与里氏木霉对铜的吸附过程。 3. Tad1基因对铜代谢相关基因的调控作用 通过表达谱芯片技术分析了AT01与WT在1mM铜胁迫下基因表达水平的差异,共获得624个上调基因,305个下调基因。根据NCBI对基因功能的分析,上调基因共分为22类。其中与铜代谢相关的基因主要有三类:(1)调控胞内离子平衡的基因。如胞内转运,细胞器跨膜运输相关基因26个(4.2%),无机离子运输及代谢相关基因25个(4.0%)。(2)耐受和解除重金属毒性作用的相关基因,如细胞解除重金属毒性相关基因有11个(1.8%);与细胞耐受胁迫反应相关基因有11个(1.8%);与细胞壁合成,细胞器的膜合成相关基因有8个(1.3%),这些基因可能参与铜的跨膜运送。对这8个基因进行了基因敲除,结果表明,其中一个基因被敲除后,菌体在铜胁迫下生长受到抑制,而且铜的吸附能力也低于WT,该基因功能有待进一步研究。(3)腺嘌呤脱氨酶功能及腺嘌呤代谢相关基因9个(1.4%)。为验证上述基因的表达水平,选择了上述铜代谢及腺嘌呤代谢相关基因中差异最显著的8个基因进行RT-PCR分析:①铁氧化酶蛋白(Fet3p),催化二个铁氧化成三价铁,1分子该酶需要4分子铜作为辅基。酵母菌研究表明,胞外铜离子浓度变化对该酶活性有明显影响。②谷胱甘肽转移酶,广泛分布于生物体内具多种功能的超家族酶,是真菌胞内非常重要的铜解毒肽类物质。主要催化谷胱甘肽(GSH)的结合反应。③细胞色素C氧化酶,存在线粒体内膜,是细胞呼吸链中非常关键的一个酶,在动物细胞凋亡过程起重要作用。该酶催化功能需要铜离子作为辅基。④Cccs同源蛋白。Cccs蛋白是酵母细胞内小分子多肽,主要功能是负责将胞内铜离子运送到SOD酶(超氧化物歧化酶)。与胞内铜解毒功能密切相关。⑤Tctr2基因,编码一个Ctr2同源基因,该基因在酿酒酵母中与亚铜离子液泡储存相关。⑥尿囊素酶基因,该基因催化尿囊素转变成尿囊酸,为腺嘌呤分解代谢下游关键酶。⑦磷酸核糖甲酰甘氨脒合酶属于腺嘌呤代谢途径中分支途径中一个酶,催化磷酸核糖焦磷酸(PRPP)转变为5`单磷酸盐肌苷(IMP)。⑧GTP(三磷酸鸟苷)环水解酶,催化GTP水解为单磷酸黄苷,腺嘌呤代谢途径中分支途径中一个酶。结果表明,与野生株相比,这些基因在过表达子和AT01中表达水平都比野生株提高2倍以上。 4.胞内铜转运相关基因克隆及功能分析 首次在里氏木霉菌中克隆并验证6个铜代谢调控因子及功能基因:Tmac1、Trace、Tctr3、Trccs、Tratx、Trcox。其中Tmac1与酿酒酵母(Saccharomyces cerevisiae)Mac1蛋白同源,胞内高亲和铜转运调控因子;Trace与酵母Ace1蛋白同源,控制胞内金属蛋白的表达,参与胞内铜毒性的解毒;Tctr3与酵母跨膜蛋白Ctr3同源,参与铜的跨膜转运;Trccs与酵母Ccs1蛋白同源,特异性将铜转运到胞质中的抗氧化酶SOD;Tratx与酵母Atx1蛋白同源,能够与亚铜离子结合形成二聚体,将其传递给高尔基体;Trcox与酵母Cox17蛋白同源,通过两个中间蛋白因子介导,将亚铜离子传递给细胞色素C氧化酶。进一步研究表明Tmac1基因编码一个501氨基酸的蛋白。在蛋白C端具两个Cys-His重复序列结构,与铜结合有关。敲除该基因后,木霉菌生长缓慢且对铜饥饿敏感,基因回补后,功能得到完全恢复。将该基因回补到酵母突变株△Mac1能完全恢复酵母突变株耐受铜饥饿能力。Trace基因编码一个含405氨基酸的蛋白,蛋白含4个CXXC结构域,与铜结合有关。同时在蛋白N端含铜依赖型DNA结合结构域CVRGHR。酵母回补实验表明,该基因能够完全恢复酵母△Ace1的功能。Tctr3蛋白含178个氨基酸,具有3个跨膜结构域,N端含保守结构域MLLAM。Trccs、Tratx、Trcox分别编码三个小分子铜分子伴侣。Trccs编码248个氨基酸的蛋白,N端含保守结构域CXXCV,与铜结合功能相关酵母胞内铜相关分子伴侣同源。Tratx编码一条含82氨基酸的蛋白,N端具有保守结构域MTCXXC。Trcox编码61个氨基酸的蛋白。另外,Trace、Trccs、Tratx、Trcox这四个基因的表达水平变化可用于监测细胞内铜离子浓度的变化。 综合上述实验结果提出Tad1基因参与木霉菌铜吸附和胞内铜代谢可能途径为:腺嘌呤脱氨酶(Tad1基因编码)催化木霉胞内腺嘌呤代谢途径中的次黄嘌呤及黄嘌呤合成,而这两种物质与胞内铜离子结合,导致细胞铜离子浓度低于正常水平。胞内自由铜离子浓度的微小改变激活了细胞内稳态调控网络,引起细胞泵入铜离子,而导致胞内铜离子浓度升高。铜浓度的升高,激活胞内转录因子Trace,调控胞内金属硫蛋白表达;同时,胞内铜相关分子伴侣Trccs、Tratx、Trcox表达上调,负责将胞内多余的铜离子转运到不同细胞器,解除胞内过量铜引起的细胞毒性。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 唐雯;严明;;里氏木霉(Trichoderma reesei)分泌组的预测及分析[J];微生物学报;2008年04期
2 陈士华;薛珍;姚金杰;吴兴泉;;里氏木霉纤维二糖水解酶Ⅱ的生物信息学研究[J];河南工业大学学报(自然科学版);2008年04期
3 葛春梅;徐娟娟;孙芹英;张洁;蔡敬民;潘仁瑞;;里氏木霉和鸡腿菇利用秸秆共发酵产木质降解酶[J];生物工程学报;2009年12期
4 安莉颖;施思;秦丽娜;陈飞;董志扬;伍红;;里氏木霉几丁质酶基因的克隆及其同源转化研究[J];西南民族大学学报(自然科学版);2013年03期
5 田明;郭宏文;陈连峰;冮洁;;里氏木霉306菌株筛选及其产酶特性的研究[J];氨基酸和生物资源;2007年01期
6 王美花;蔡谨;黄磊;吕正兵;张耀洲;徐志南;;重组里氏木霉膨胀素的生物学特性研究[J];中国科技论文在线;2010年03期
7 夏黎明,代淑梅,岑沛霖;应用固定化里氏木霉糖化玉米秆纤维素的研究[J];微生物学报;1998年02期
8 刘刚;杨长得;康康;邢苗;田生礼;;根癌农杆菌介导里氏木霉转化体系的建立和条件优化[J];生物技术;2011年04期
9 顾斌涛;江守坤;夏黎明;;中性内切-β-葡聚糖酶基因在里氏木霉中的重组与表达[J];高校化学工程学报;2013年01期
10 郝学财;余晓斌;刘志钰;王蓓;;响应面方法在优化微生物培养基中的应用[J];食品研究与开发;2006年01期
11 张晓烜;李景富;王傲雪;;里氏木霉产纤维素酶条件的优化[J];东北农业大学学报;2008年07期
12 杨晓辉;余晓斌;;碱与微波联合处理蔗渣对里氏木霉发酵产纤维素酶的影响[J];生物加工过程;2008年02期
13 宋娜娜;宋向阳;欧阳嘉;勇强;;里氏木霉与黑曲霉混合发酵产纤维素酶及其水解特性[J];生物加工过程;2010年05期
14 朱余玲;黄文;刘葳;倪晋仁;;利用里氏木霉生物转化制备黄姜薯蓣皂甙元的清洁新工艺[J];北京大学学报(自然科学版);2010年04期
15 刘超纲,刘飞跃,余世袁;啤酒麦糟诱导里氏木霉生产纤维素酶的研究[J];中南林学院学报;1997年01期
16 王冰冰;夏黎明;杜风光;;黑曲霉纤维二糖酶基因的克隆及其在里氏木霉中的表达[J];化工学报;2011年02期
17 邵金华;冮洁;;里氏木霉重组t-PA纯度、分子量及等电点鉴定[J];饲料工业;2006年24期
18 史通;宋向阳;欧阳嘉;勇强;;黑曲霉与里氏木霉固态混合发酵产β-葡萄糖苷酶[J];生物加工过程;2013年05期
19 冮洁;杜连祥;路福平;姚蕾;于海龙;江成英;曹畅;;培养条件对里氏木霉306菌体形态和t-PA生物合成的影响[J];工业微生物;2005年04期
20 张洪斌;陈贤东;胡雪芹;朱慧霞;;一株里氏木霉产纤维素酶发酵条件的研究[J];食品科学;2008年11期
中国重要会议论文全文数据库 前3条
1 邢苗;刘刚;汤新;张煜;;里氏木霉纤维素酶系列基因在毕赤酵母中的高效表达[A];中国细胞生物学学会第八届会员代表大会暨学术大会论文摘要集[C];2003年
2 邹根;江艳萍;陈玲;刘睿;王成树;周志华;;里氏木霉表达系统构建和优化[A];中国菌物学会第六届会员代表大会(2014年学术年会)暨贵州省食用菌产业发展高峰论坛会议摘要[C];2014年
3 欧阳嘉;严明;孔德翀;许琳;;里氏木霉纤维降解酶系的全基因组解析[A];第三届全国化学工程与生物化工年会论文摘要集(上)[C];2006年
中国博士学位论文全文数据库 前5条
1 田晔;里氏木霉FS10-C强化修复铜污染土壤的研究[D];安徽理工大学;2012年
2 赫荣琳;TrATG5基因对里氏木霉生长发育的影响[D];浙江大学;2009年
3 陆青山;木质纤维素对里氏木霉产纤维素酶的诱导[D];南京林业大学;2013年
4 冮洁;基因工程菌株里氏木霉合成t-PA发酵条件及r-PA基因在甲醇毕赤酵母中表达的研究[D];天津科技大学;2005年
5 傅科鹤;里氏木霉铜代谢相关基因克隆与功能分析[D];上海交通大学;2013年
中国硕士学位论文全文数据库 前10条
1 林涛;锌指蛋白和启动子对里氏木霉基因表达的影响[D];福建师范大学;2013年
2 李辉;里氏木霉产纤维素酶诱导剂的筛选与过程优化[D];中南林业科技大学;2011年
3 陈贤东;利用麸皮生物发酵制备低聚糖的研究[D];合肥工业大学;2010年
4 吕丹丹;里氏木霉中表达质粒的构建及中性纤维素酶基因的表达[D];华东理工大学;2012年
5 齐大波;里氏木霉生产t-PA发酵及动力学的研究[D];吉林大学;2009年
6 朱姚;基因操作构建里氏木霉RUT-C30蛋白酶缺陷株[D];华东理工大学;2013年
7 闫作梅;用于大豆膳食纤维改性的里氏木霉工程菌的构建[D];东北农业大学;2010年
8 鲁书玲;里氏木霉Trichoderma reesei自噬相关基因TrATG5的克隆与功能分析[D];浙江大学;2008年
9 赵静;里氏木霉外切葡聚糖酶Ⅰ基因的克隆和生物信息学分析[D];山西农业大学;2013年
10 王美花;里氏木霉swollenin在米曲霉中的表达和纯化[D];浙江理工大学;2010年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978