两类流体力学方程组的解的极限分析
【摘要】:本学位论文研究了两类流体力学方程组:可压Navier-Stokes-Poisson方程组和可压Euler-Korteweg方程组。可压Navier-Stokes-Poisson方程组描述在没有磁效应时静电势力产生的电场作用下充电粒子(例如:电子)的运动。可压Euler-Korteweg方程组刻画了自然界中的相变现象,考虑了密度变化较大的区域,特别是液体-蒸汽相变流体界面的毛细效应。本文主要讨论了二维可压Navier-Stokes-Poisson方程组在有界区域上的初边值问题的整体解的零电子质量极限,多维可压Navier-Stokes-Poisson方程组在周期域上的初值问题的局部经典解的零电子质量极限和三维可压Euler-Korteweg方程组的初值问题的局部经典解的零马赫数极限。第一章主要介绍可压Navier-Stokes-Poisson方程组和可压Euler-Korteweg方程组的相关背景、研究现状以及本文的研究目标、研究思路和相关的预备知识。第二章研究了二维可压Navier-Stokes-Poisson方程组在有界区域上的初边值问题的整体解的零电子质量极限。首先,使用Schauder不动点定理得到二维可压Navier-Stokes-Poisson 方程组在有界区域上的初边值问题的解的局部存在性。然后,利用能量估计,建立初边值问题的解的一致估计,这个估计关于时间和电子质量是一致的。最后,使用一致先验估计和局部存在性定理,运用标准的连续性方法,整体存在性能够被证明。同时利用一致估计和紧性方法,能够证明当电子质量趋于零时,二维可压Navier-Stokes-Poisson方程组的整体解收敛到不可压Navier-Stokes方程组的初边值问题的解。第三章研究了多维可压Navier-Stokes-Poisson方程组在周期域上的初值问题的局部经典解的零电子质量极限。首先,利用无量纲参数,即电子与离子的质量比,将原始方程组通过变量代换化为对称形式。其次,利用能量估计、Sobolev空间嵌入定理和Moser型不等式等方法得到解在局部(时间区间与无量纲参数有关)的一致先验估计。然后,根据Kawashima关于双曲-抛物系统的研究结果,证明了解的关于电子质量一致的局部存在性。另外,也建立了解关于时间导数的一致估计,从而,根据Aubin-Lions紧性引理,能够证明当电子质量趋于零时,可压Navier-Stokes-Poisson方程组初值问题的局部经典解收敛到不可压Navier-Stokes方程组初值问题的解。第四章研究了三维可压Euler-Korteweg方程组在全空间或周期域上的初值问题的局部经典解的零马赫数极限。首先,利用无量纲参数,即马赫数,将原始方程组化为对称形式。其次,利用可压Euler-Korteweg方程组局部存在性定理,建立收敛-稳定准则,利用能量估计证明了无量纲参数有关的可压方程组的经典解与相应不可压方程组的解的误差估计,从而能证明当马赫数趋于零时,可压Euler-Korteweg方程组初值问题的局部经典解收敛到不可压Euler方程组的初值问题的解。第五章讨论了一般初值的情形,并提出了相关研究的展望。