收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

Studies of the Liquid Adsorption Behavior and Surface Properties of Carbon Materials

Mebrahtu Melake Mezgebe  
【摘要】:The terrific electrical and physical properties of carbon materials have brought great attention of researchers and scientists studying their characteristics related to the chemical, physical and environmental conditions mainly for the purpose of aerospace, marine and electronic industries. The aim of this project is to study the liquid adsorption behavior and determine the surface free energy of carbon materials by capillary rise method. The methods used to characterize CB were BET, XRD and FTIR. BET test revealed the mesoporous structure of CB with greater specific surface area of the oven dried CB than the as received one. The XRD test exposed the difference in spacing between the hexagonal layered planes of the two samples. From FTIR spectra test of CB the existence of the following functional groups was deduced:O-H (hydroxyl or carboxyl), C-H (aliphatic), C=C (olefin), C-O (hydroxyl, ester, or ether), and O-H (residual hydroxyl groups), sulfide (C-S) and bromide(C-Br). The capillary rise method was used to study the surface free energy and liquid adsorption behavior of four different carbon materials:carbon black, carbon nanotubes, carbon fibers and graphene. The four probe liquids used for the experiment were hexane and diiodomethane (non polar liquids) and water and formamide (polar liquids). Four of the carbon materials were found to adsorb diiodomethane greatly which indicates the major role of Lifshitz-van der Waals interaction component in the adsorption process. The total surface free energies of all four carbon materials are contributed greatly by the Lifshitz-van der Waals interaction component. The surface free energy of CB was greater for as-received sample than for oven-dried sample due to the difference in Lewis acid base component of the two samples. Surface free energy of SWCNTs was found to be greater than MWCNTs and MWCNTs were found to be greatly in Lewis acid, ys+, where as SWCNTs greatly in Lewis base, γs-. The liquid adsorption behavior of CNTs seems to be influenced by the wall structure or the surface properties because the SWCNT adsorbed polar liquid greatly and the MWCNT adsorbed non-polar liquid greatly. Furthermore, the capillary rise method has approved the acidic nature of carbon fibers. The uncertainty exhibited in the surface energy of graphene could be attributed to either the few number of literature reported data (actually one) or the purity of graphene. Carbon materials are found to be hydrophobic with greater Lifshitz-van der Waals component than the Lewis acid base component of their surface free energy.


知网文化
【相似文献】
中国期刊全文数据库 前19条
1 王益军;王六定;杨敏;严诚;;Effects of B and N dopings and H_2O adsorption on structural stability and field emission properties of cone-capped carbon nanotubes[J];Chinese Physics B;2011年11期
2 ;Continuous Production of Carbon Nanotubes by Using Moving Bed Reactor[J];Chinese Chemical Letters;2001年12期
3 ;Novel Silicon Nanotubes[J];Chinese Chemical Letters;2001年12期
4 刘丽;李守春;郭欣;何越;王连元;;Excellent performance of gas sensor based on In_2O_3–Fe_2O_3 nanotubes[J];Journal of Semiconductors;2016年01期
5 施剑皓;赵彤;李学潮;霍萌;万润东;;First-principles calculation on electronic properties of B and N co-doping carbon nanotubes[J];Journal of Semiconductors;2016年03期
6 SHAN Hao;LIU ChangBai;LIU Li;WANG LianYuan;LI ShouChun;ZHANG XiaoBo;BO XiaoQing;CHI Xiao;;Synthesis and acetone gas sensing properties of α-Fe_2O_3 nanotubes[J];Science China(Chemistry);2013年12期
7 ;Preparation and properties of magnetic iron oxide nanotubes[J];Particuology;2008年05期
8 ;The structural,electronic and magnetic properties of the 3d TM(V,Cr,Mn,Fe,Co,Ni and Cu) doped ZnO nanotubes:A first-principles study[J];Science China(Physics,Mechanics & Astronomy);2012年03期
9 ;Predominating stable adsorption and direct electrochemistry of glucose oxidase on carbon nanotubes by oxygen-containing groups[J];Chinese Chemical Letters;2007年03期
10 ;Chemical modification and the photoluminescence stabilization of titanic acid nanotubes[J];Science in China(Series B:Chemistry);2006年02期
11 ;Effects of structure and sur-face properties on carbon nanotubes' hydrogen storage characteristics[J];Chinese Science Bulletin;2001年16期
12 陶蕾;张余洋;孙家涛;杜世萱;高鸿钧;;Band engineering of double-wall Mo-based hybrid nanotubes[J];Chinese Physics B;2018年07期
13 李再东;胡月川;贺鹏斌;孙琳琳;;Domain wall dynamics in magnetic nanotubes driven by an external magnetic field[J];Chinese Physics B;2018年07期
14 Lai Jiang;Wanlin Guo;;Analytical solutions for elastic binary nanotubes of arbitrary chirality[J];Acta Mechanica Sinica;2016年06期
15 MEYSAM Najafi;;Theoretical Investigation of Hydrogen Sulfide Adsorption on the Surface of F Functionalized Carbon and Carbon Silicon Nanotubes (7,0) in the Gas Phase and Water[J];结构化学;2017年03期
16 Bin Tan;Zhao-Feng Wu;Zai-Lai Xie;;Fine decoration of carbon nanotubes with metal organic frameworks for enhanced performance in supercapacitance and oxygen reduction reaction[J];Science Bulletin;2017年16期
17 S.K.Srivastava;V.D.Vankar;V.Kumar;;Effect of hydrogen plasma treatment on the growth and microstructures of multiwalled carbon nanotubes[J];Nano-Micro Letters;2010年01期
18 Shu-Qin Cui;Xu-Yang Ji;Fu-Xin Liang;Zhen-Zhong Yang;;Ionic liquid functionalized polymer composite nanotubes toward dye decomposition[J];Chinese Chemical Letters;2015年08期
19 刘唱白;何滢;王圣蕾;;Excellent ethanol sensing properties based on Er_2O_3-Fe_2O_3 nanotubes[J];Chinese Physics B;2015年11期
中国重要会议论文全文数据库 前10条
1 ;A versatile route to patterned carbon nanotubes with adjustable array using breath figure method[A];2011中国材料研讨会论文摘要集[C];2011年
2 谈小建;刘惠军;文艳伟;吕红艳;潘璐;石兢;唐新峰;;Optimizing the thermoelectric performance of ultra-small single-wall carbon nanotubes[A];2011中国材料研讨会论文摘要集[C];2011年
3 Dong-Chun Yang;Ran Jia;Hong-Xing zhang;;Novel carbon nanotubes from 6,6,12-Graphyne[A];第十三届全国量子化学会议论文集——第一分会:电子结构理论与计算方法[C];2017年
4 Qianqian Wang;Ning Wang;Sifa He;Jihua Zhao;Jian Fang;Weiguo Shen;;Ultrasonic synthesis of Co-Fe Prussian blue analogue/carbon nanotubes composite material and its catalytic application in epoxidation of styrene[A];中国化学会第十五届胶体与界面化学会议论文集(第二分会)[C];2015年
5 渠成兵;刘玉;吴超;冯青平;肖红梅;付绍云;;Some recent advances in enhanced mechanical properties at cryogenic temperatures of epoxy composites by carbon nanotubes and graphene[A];中国力学大会-2015论文摘要集[C];2015年
6 ;SHAPE MEMORY PROPERTIES AND ELECTROMAGNETIC SHIELDING EFFECT OF CNT/SMP NANOCOMPOSITES[A];复合材料力学的现代进展与工程应用——全国复合材料力学研讨会论文集[C];2007年
7 ;Immunological effects of multiwalled carbon nanotubes in mice[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年
8 尹彦;A.G.Walsh;A.N.Vamivakas;S.B.Cronin;D.E.Prober;B.B Goldberg;;Studies of electron-phonon coupling of the G mode and components of a combination mode in carbon nanotubes[A];第十六届全国光散射学术会议论文摘要集[C];2011年
9 胡征;;From Carbon-Based Nanotubes to Nanocages:Towards Advanced Energy-Oriented Applications[A];中国真空学会2012学术年会论文摘要集[C];2012年
10 ;Catalytic Synthesis and Application ExamPles of Multi-Walled Carbon Nanotubes[A];第一届全国纳米技术与应用学术会议论文集[C];2000年
中国博士学位论文全文数据库 前10条
1 Abdul Jalil;低维纳米材料结构和电子性质的第一性原理研究[D];中国科学技术大学;2018年
2 魏浩明;有序碳纳米管结构的转移、修饰及应用[D];清华大学;2017年
3 李东琦;单壁碳纳米管的生长、表征和图形化[D];清华大学;2017年
4 沙风焕;多壁碳纳米管动力学行为的研究[D];太原理工大学;2005年
5 施冬莉;碳纳米管及其复合材料的力学性能研究[D];清华大学;2005年
6 王根伟;碳纳米管稳定性及其复合材料的制备和力学性质[D];太原理工大学;2006年
7 郑卫;碳纳米管生物界面的构筑及其电化学性质的研究[D];哈尔滨工程大学;2006年
8 于陕升;氮掺杂碳纳米管的第一原理研究[D];吉林大学;2007年
9 王晋宝;碳纳米管的相关力学问题的研究[D];大连理工大学;2007年
10 孟庆杰;聚酯、聚酰胺功能化多壁碳纳米管的制备与性能研究[D];天津工业大学;2008年
中国硕士学位论文全文数据库 前10条
1 Mebrahtu Melake Mezgebe;[D];东华大学;2013年
2 Ahmed,Syed Bilal;[D];南京理工大学;2018年
3 许鹏;碳纳米管表面处理与分散的研究[D];华南理工大学;2018年
4 司淑贤;聚合物修饰碳纳米管的研究及应用[D];齐鲁工业大学;2018年
5 康旭;碳纳米管/聚合物复合材料的制备和表征[D];兰州大学;2007年
6 雷璇;碳纳米管基复合材料的制备与表征[D];安徽师范大学;2007年
7 Mian Farrukh lmran;[D];中南大学;2007年
8 Christine CHENH(黎慧敏);[D];东华大学;2013年
9 李进伟;碳纳米管的固相合成、表征及催化性能初探[D];吉林大学;2009年
10 曹慧群;碳纳米管的组装[D];长春理工大学;2002年
中国重要报纸全文数据库 前2条
1 易水;计算机专业时文选读(803)[N];计算机世界;2000年
2 本报记者 杨清清;微软的抉择:是否保留Surface?[N];21世纪经济报道;2017年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978