随机线性二阶锥互补问题及其在最优潮流中的应用研究
【摘要】:二阶锥互补问题是一类均衡优化问题,是指在二阶锥约束的条件下两组变量之间满足一种“互补”关系,是互补问题和二阶锥规划的推广.借助于欧几里得若当代数理论,其理论方面的研究取得了很大的进展,同时该问题在工程、经济等领域有着广泛的应用.然而,实际问题中通常含有不确定的因素,忽视这些不确定因素可能会导致决策的失误,造成不可估量的损失,因此对随机二阶锥互补问题的研究具有重要意义和应用价值.另一方面,电力系统中的最优潮流是数学最优化理论在电力系统中的应用,它能统一地用数学模型来描述电力系统的安全性和经济性等问题.随着电力系统运行方式的改变特别是可再生新能源的直接并网,节点处注入功率的不稳定性也更加明显,这给电力系统的调度与运行也带来了极大的挑战,由此产生了随机最优潮流.如何有效的求解随机最优潮流,是当前学者们关注的热点问题之一.本文主要研究了随机线性二阶锥互补问题及其求解方法,并通过其在随机最优潮流中的应用来测试所得到的理论结果及方法的有效性.本文的主要内容和创新点:首先,针对线性二阶锥互补问题的研究,提出了一种正则化并行矩阵分裂法.与同类算法相比,本文所考虑问题中的矩阵是对称半正定的,正则化参数是单调递减趋于零的.在合适的条件下,新算法具有收敛性,而且算法可以并行实现,特别是子问题能够精确求解.数值实验表明新算法对大规模的问题,特别是对稠密的病态对称正定矩阵或半正定矩阵问题都是适用的.其次,考虑了随机线性二阶锥互补问题.受到随机互补问题中的期望残差极小化方法的启发,首先利用二阶锥互补函数和期望残差极小化模型,把随机线性二阶锥互补问题转化成无约束最优化问题.由于目标函数中含有数学期望,再利用蒙特卡罗近似方法来近似期望残差极小化问题.接着讨论了期望残差极小化问题和近似问题解的存在性以及收敛性,并在一定的条件下,近似问题的解序列会依概率1地以指数速率收敛于期望残差极小化问题的解.然后,由于近似问题是非凸最优化问题,因此又对近似问题稳定点序列的收敛性和指数收敛速率进行了探讨.最后讨论了期望残差极小化问题的解对原问题随机线性二阶锥互补问题的鲁棒性.再次,探讨了混合随机线性二阶锥互补问题.由于应用问题中往往会含有其它的约束条件,得到的模型是混合互补问题,因此本文又讨论了混合随机线性二阶锥互补问题.首先讨论了该问题的期望残差极小化模型及其蒙特卡罗近似问题的强制性和鲁棒性,然后给出了近似问题解序列的收敛性及其指数收敛速率.由于近似问题是非凸优化,因此也给出了近似问题稳定点序列的收敛性及其指数收敛速率.最后,考虑了具有辐射状网络结构的电力系统随机最优潮流问题.由于非线性潮流方程的凸松弛与旋转二阶锥的形式一致,故可以把随机最优潮流问题转化成随机二阶锥规划.在一定的条件下,随机二阶锥规划问题可以通过其KKT条件来求解.由于随机二阶锥规划最优潮流问题的KKT条件是一个混合随机线性二阶锥互补问题,因此利用混合随机线性二阶锥互补问题的求解方法对随机二阶锥规划最优潮流问题进行了求解.数值结果表明了所提方法的有效性,并且由于所选取的二阶锥互补函数带有某些参数,所以决策者可以根据实际情况和实际需要,在可接受的误差水平上,通过选取不同的参数值来达到他们的最优策略.