非线性时滞定常系统多维泰勒网辨识与预测控制
【摘要】:工业过程大都具有非线性、时滞、耦合等特征,并受外界干扰等影响。由于这些特征及影响的存在,常会导致控制系统超调量增大,调节时间变长,从而使系统的过渡过程变坏,稳定性降低,极易引起闭环系统的不稳定。如何克服这些问题,对系统进行有效的控制成为了控制理论领域与工程领域研究的重点。由于非线性和时滞等特性的存在,一方面难以得到系统精确的数学模型,另一方面线性系统相关的研究成果很难直接应用到非线性系统中。近年来,多维泰勒网(Multi-dimensional Taylor Network,MTN)的出现为解决非线性系统建模与控制提供了有效的解决方案,其结构简单,运算速度快,具有并行处理、自主学习和极强的非线性映射能力,为此,将MTN应用到非线性时滞系统来解决非线性、时滞、耦合、外界干扰等问题。所以本课题的研究具有重要的理论意义和实际应用价值。本文以非线性时滞定常系统(以下简记为非线性时滞系统)为研究对象,综合考虑外界干扰、噪声、耦合与输入死区等问题,将多维泰勒网作为研究工具,结合预测控制思想,以提高动态性能为核心,以改善计算复杂度为关键来研究非线性时滞系统控制问题。借助MTN的优良性能,分别设计MTN辨识模型、MTN预测模型、MTN控制器和MTN补偿器,对非线性时滞系统的输出跟踪控制问题进行了深入研究,提出了基于MTN的预测控制方案,并采用Lyapunov稳定性理论证明闭环系统的稳定性。论文的主要研究工作概括如下:1.提出基于MTN的非线性时滞系统辨识方案。利用MTN对非线性时滞系统进行辨识,证明MTN模型表达式的合理性,确立模型中加权项的排列次序及其递归表达式;利用MTN特殊的结构以及极限学习机算法,根据中间层节点与输出权值的关系得到最优MTN辨识模型,利用极限学习机算法计算输出权值,避免梯度法迭代寻优的过程,在保证运算精度的前提下,有效降低算法复杂度;结合剪枝算法对MTN结构进行精简,提高运算效率;利用互相关函数方法,通过输入和输出信号的相关性对未知时滞进行辨识。实验结果验证了所提方案的有效性。2.提出非线性时滞系统的MTN预测模型构建方案。基于MTN的非线性逼近能力,以补偿时滞影响为目的,给出两种预测模型的构建方案,分别为递推MTN预测模型和非递推MTN预测模型,并结合适当的学习算法进行实时在线建模,准确构建预测模型,从而补偿时滞的影响。实验结果验证了所提方案的有效性。3.提出单入单出非线性时滞系统的MTN预测控制方案以及稳定性分析方案。无需状态反馈,仅依靠输出反馈构成闭环控制,实现了系统相对于给定参考信号的实时输出跟踪控制;基于MTN的非线性逼近能力,依靠非递推技术设计了非递推d步超前MTN预测模型来补偿时滞的影响;设计MTN控制器来实现系统精确跟踪控制,利用MTN控制器的网络化结构,采用输入和输出信号合成的误差信号作为控制器输入;根据Lyapunov稳定性理论证明闭环系统稳定性。实验结果验证了所提方案的有效性。4.提出不含外界干扰与带有外界干扰情况下单入单出非线性时滞系统的MTN预测控制方案以及稳定性分析方案。MTN分别作为预测模型、控制器和补偿器,无需状态反馈实现了系统相对于给定参考信号的实时输出跟踪控制。基于MTN的非线性逼近能力,依靠非递推技术设计了非递推d步超前MTN预测模型来补偿时滞的影响;设计MTN控制律对非线性时滞系统进行输出跟踪控制;同时MTN补偿器来抵消干扰的影响;利用MTN预测模型的预测精度,控制权系数和优化系数,根据Lyapunov稳定性理论证明闭环系统稳定性,并得到MTN控制器的参数调整方法。实验结果验证了所提方案的有效性。5.提出多入多出非线性时滞系统的MTN预测控制方案以及稳定性分析方案。借助MTN的良好特性,其泛化性能优良,无需解耦过程与状态反馈,可以实现系统对给定参考信号的实时输出跟踪控制。利用递推技术设计了递推d步超前MTN预测模型来补偿时滞的影响;并针对MTN结构特性,设计MTN控制器来实现系统精确跟踪控制,通过采用输入信号和输出信号合成的误差信号作为控制器输入;根据Lyapunov稳定性理论证明闭环系统稳定性。实验结果验证了所提方案的有效性。6.提出带有未知时滞情况下的多入多出非线性时滞系统的多维泰勒网预测控制方案以及稳定性分析方案。在辨识时滞的基础上,提出基于多维泰勒网的递推d步预测控制方案。利用递推技术设计了递推d步超前MTN预测模型来补偿时滞的影响;给出多步预测目标函数,通过迭代寻优,进而得到最优控制律;利用MTN预测模型的预测精度,控制权系数和优化系数,根据Lyapunov稳定性理论证明闭环系统稳定性,并得到MTN控制器参数调整方法。实验结果验证了所提方案的有效性。