一维双曲平衡律系统的弱解和零松弛极限的研究
【摘要】:双曲平衡律是一个热门的研究领域,其中有一些热点问题,它们不仅引起职业数学家们的兴趣,而且也为物理学家和工程人员所关注。
双曲平衡律的概念是由十八世纪著名的自然哲学家Euler的研究工作(1755年)提出,并经历一百五十多年的发展,成为研究气体动力学甚至更广泛的连续介质物理学的自然框架。在这一百五十多年里出现了像Stokes, Challis, Riemann, Rankine, Hugoniot, Lord Rayleigh以及后来的Prandtl, Hadamard, Lewy, Taylor等众多伟大的人物,他们撰写出许多基本论文,从而为进一步数学理论的发展奠定了基础。许多伟大的科学家如Von Neumann, Courant, Friedrichs, Bethe和Zeldowich都对双曲平衡律这一领域有兴趣并提出许多新的关键概念,对我们当今的研究仍然有着深远的影响。
二次世界大战后,一系列的重大结果被Godunov,Lax,John,Morawetz和Oleinik等新一代大数学家所获得,使得双曲平衡律这一领域的数学理论有了显著的发展。到二十世纪六十年代中叶,Glimm在他的著名论文中证明具有小BV(全变差)初值一维一般双曲守恒律方程组解整体存在性,随着这篇著名论文的发表,标志在这一领域中历史上最为重大突破的发现。利用人工粘性消失法结合补偿列紧理论,以及应用不变区域或最大值原理,本论文讨论了一维双曲平衡律系统Cauchy问题的整体弱解存在性及其含有松弛项扩散占优相关系统的Cauchy问题零松弛极限。本论文分两类问题,主要研究内容包括以下几个方面:
第一类问题:
1、一维双曲平衡律系统Cauchy问题的整体弱解存在的框架定理。
首先在一定条件下得到相应抛物系统的粘性解的存在性,然后用不变区域或最大值原理得到粘性解的一致有界性,由此可得对此粘性解存在一个弱(弱*)收敛的子列。一般而言,对非线性流函数弱收敛并不一定弱连续,为得到序列的强收敛,我们运用补偿列紧理论,构造适当的熵-熵流对,由紧性定理,只需证明由粘性解序列导出的Young测度是一点测度。
2、两个具体一维2×2双曲平衡律的Cauchy问题的整体弱解存在性结果。
其一,研究非齐次旋转退化双曲方程组Cauchy问题弱解的存在性,在上述框架定理下,利用最大值原理,得到粘性解的L~∞界,再结合标量守恒律以及BV紧性和补偿列紧理论,得到在非齐次项满足一定条件下弱解存在,并举例验证。
其二,研究在两种特殊压力函数条件下含有源项的一维Euler方程组Cauchy问题弱解存在性。利用粘性消失法结合补偿列紧理论,同时结合最大值原理,得到在线性源项和一般源项,且相应的源项满足一定条件下,其弱解存在。并指出一般源项包含一些已经研究过的特殊源项为其特例。
第二类问题:
1、研究一般扩散占优的2×2双曲平衡律系统奇异松弛极限,用补偿紧性方法,在松弛时间τ比扩散系数ε趋于零快时,即τ= o(ε),ε→0时,得到其解的整体存在性一般框架:如果上述系统的解存在对ε一致的先验L~∞估计,那么其解序列收敛于上述系统的对应平衡状态解。
2、应用上述框架定理和不变区域理论,可将定理应用到如下一些具有非齐次项和松弛项的重要的非线性系统,如有非齐次项和松弛项的二次流、LeRoux系统、非线性弹性系统和交通扩展流等。