金属纳米颗粒等离增强及非线性的表面积分方程方法分析
【摘要】:随着微纳制造工艺的飞速发展,电磁器件的设计逐渐趋向于小型化、短波长,纳米尺寸元件的研究与设计得到了越来越多研究学者的关注。金属纳米颗粒在电磁波的激励下能够产生局域化的表面等离激元共振,使其表面附近局域化的电磁场得到显著增强,进而大大地提高周围介质的非线性响应,因此被广泛用于集成光学、太阳能电池、超分辨成像、生物传感等领域。金属纳米颗粒在光波段下已失去良导体属性,表现为介质属性,其独特的局域场增强以及非线性效应,促使人们开展电磁场与纳米材料相互作用的理论和数值研究。本文以经典电磁学理论为基础,以表面积分方程方法为数值仿真工具,重点研究了介质电磁散射的快速计算,金属纳米颗粒等离增强在薄膜电池中的应用,以及金属纳米颗粒表面的非线性二次谐波响应。本文第一部分研究了计算电磁学基本理论。针对宏观电磁场问题,介绍了麦克斯韦方程组、媒质本构关系、电磁场边界条件以及亥姆霍兹定理。具体到电磁散射问题,分别介绍了矩量法、快速多极子算法以及雷达散射截面积的定义。该部分为数值分析电磁波与金属纳米颗粒的相互作用提供了理论基础。本文第二部分研究了电磁散射问题的表面积分方程方法分析。首先,针对均匀介质的电磁散射问题,详细地推导了表面积分方程的建立,矩量法的离散以及广义最小余量法的数值迭代求解过程。其次,为提高计算性能和计算能力,将快速多极子算法应用于表面积分方程方法中。最后,为提高表面积分方程的收敛性,提出了一种新型的混合内外迭代预条件技术,在保证精度的同时进一步提高表面积分方程方法的计算效率,且该方法能够与稀疏近似逆预条件能够良好兼容。该部分为分析金属纳米颗粒等离增强和非线性效应提供了数值方法基础。本文第三部分研究了金属纳米颗粒等离增强的表面积分方程方法分析。首先,介绍了表面等离激元原理,利用表面积分方程方法分析金属纳米颗粒的局域场增强效应,并定义了局域场增强因子。其次,利用金属纳米颗粒的等离增强提高薄膜电池的光伏性能,提出了快速分析等离增强型薄膜电池的量子电磁半经典方法。该方法通过将局域场增强通过二次量子化引入到电子-光子耦合作用中,结合密度泛函紧束缚理论和非平衡格林函数从量子层面深度理解非线性的光伏过程。最后,将提出的半经典量子电磁方法用于分析金属纳米球颗粒不同材料、数量、位置分布及滴铸比对薄膜电池光伏性能的影响。本文方法从原子尺度建模出发,深层次地理解非线性光电转换过程,为等离增强型薄膜电池的工业制造提供了理论上的支撑。本文第四部分研究了金属纳米颗粒非线性的表面积分方程方法分析。首先,讨论了金属纳米颗粒表面等离激元现象与非线性效应的关联,分析了二阶非线性过程及其数值建模方法。其次,针对任意形状金属纳米颗粒非线性二次谐波产生,提出了高效的表面积分方程分析方法,并考虑基次场与二次谐波场的互耦。最后,将本文方法应用于金属纳米颗粒二次谐波的特性研究,包括辐射方向性、界面敏感性及增强方法。总之,论文以表面积分方程为基础,提出了分析金属纳米颗粒等离增强及非线性二次谐波的数值方法。通过大量数值算例,验证了本文各方法的准确性,稳定性与高效性。