GNSS/INS组合导航系统初始对准及其故障修复研究
【摘要】:全球卫星导航系统可在无遮蔽环境中为用户提供高精度、低频率的导航定位服务,但在复杂环境中,GNSS信号易被遮挡或干扰。惯性导航系统经过初始化后,能够独立自主提供高频率、连续的位置、速度和姿态信息。通过二者合理结合,能够在遮蔽或半遮蔽环境中为用户提供连续且可靠的导航解。本文重点研究GNSS/INS组合导航系统初始化及其故障修复方法,内容涵盖高精度惯导快速自对准技术、大失准角故障处理、磁力计辅助MEMS IMU抗差自适应姿态融合、神经网络辅助GNSS/INS组合导航系统故障识别与修复和惯导辅助BDS三频周跳探测与修复技术等,主要研究成果如下:(1)初始对准的精度和速度将直接影响惯性导航系统的导航定位性能。针对静基座对准的精度低、收敛速度慢、可观测性差等问题,建立了静基座对准模型,利用PWCS法对静基座的可观测性进行了分析,提出了利用转位机构增强可观测性的最优多位置对准方案。结果表明,提出的最优三位置对准方法能实现所有状态量可观测,提高状态量的估计精度,有效缩短对准时间。(2)大方位失准角会使SINS误差模型的非线性程度大大增强,从而导致传统EKF滤波估计精度降低甚至发散。针对惯性系统大失准角故障,推导了SINS任意失准角误差模型,引入了单行采样的sigma点策略,降低UT变换的复杂度,同时为了保证精度,提出利用比例最小偏度动态调整sigma点至采样中心的距离,避免高阶项误差。利用提出的SSUKF处理大失准角对准的非线性方程,结果表明,SSUKF算法具有与SUKF算法近似的估计精度,但计算复杂度明显降低,有利于减少计算量。(3)低精度MEMS IMU姿态初始化需要磁力计等其他传感器辅助,但外部磁干扰环境会导致磁力计出现量测故障。针对磁力计故障,提出了简化的六参数校正模型,改进了传统的LM算法,优化了迭代策略,建立了载体系下现场快速磁力计校正算法。在此基础上,基于相关观测抗差估计理论提出了磁力计/IMU抗差自适应融合定姿模型。结果表明,该模型能有效削弱磁力计故障引起的姿态融合异常,且实现了低精度IMU短时受振时的姿态稳健融合估计。(4)复杂城市环境中,GNSS/INS组合导航系统易受观测值粗差和动力学模型故障双重影响。针对传统故障检测手段无法识别两类故障的弊端,建立了基于马氏距离的整体故障检测方法,提出了最优RBF神经网络训练策略并辅助组合导航故障识别,然后针对识别的不同故障来源分别建立了双调节抗差因子和自适应遗忘因子进行调节,有效识别、分离并削弱组合系统中的两类故障。结果表明,针对较小的密集GNSS观测值粗差,最优RBF神经网络的识别成功率可达92%。此外,当GNSS信号完全失锁时,最优RBF神经网络还能根据INS测量值预测导航解,短时间内继续提供高精度位置信息。(5)强多路径环境中,严重的伪距多路径效应会导致卫星整周跳变或失锁,历元间变化剧烈的伪距多路径残差还会影响周跳估值的判定,导致传统三频伪距相位组合周跳探测模型失效。为了实现强多径环境中周跳的准确探测与修复,以BDS/INS组合系统为例,提出了INS定位辅助的北斗三频组合法,构建了INS辅助的周跳决策量,优选了强多路径环境中的决策量组合,分析了INS定位误差对周跳探测能力的影响。结果表明,惯性辅助的周跳探测方法有效减少了强多路径环境中的周跳误探概率,对密集小周跳的探测与修复不受多路径效应残差影响。该论文有图93幅,表29个,参考文献187篇。