交互式遗传算法中用户的认知规律及其应用
【摘要】:
交互式遗传算法把人的智慧和遗传算法结合起来,主要用于解决无法建立显式函数的隐式性能指标优化问题。交互式遗传算法在发挥人类智慧的同时,也需要面对人自身的局限性。人的认知局限性和易疲劳特点,使得交互式遗传算法的种群规模较小和进化代数较少,这限制了交互式遗传算法的优化性能。许多学者研究了改进交互式遗传算法性能的方法,这些方法几乎都与用户偏好信息相关。由于用户偏好信息往往综合了多种用户认知规律,因此,为了更好地获取用户偏好信息,必须深入研究交互式遗传算法中用户的认知规律。但是,已有研究成果中对用户认知规律的研究却很少。本文通过研究交互式遗传算法中用户的认知规律,进而研究交互式遗传算法收敛理论和性能改进方法。
本文内容主要从以下5个方面展开:(1)研究交互式遗传算法中用户的参照认知规律,分别考虑理论参照认知和实际参照认知的算法收敛理论,提出交互式遗传算法全局收敛的强条件和弱条件;(2)研究交互式遗传算法中用户的理性认知规律,提出用户保持理性是交互式遗传算法全局收敛的充分条件,并针对赋予适应值的不同方法给出用户保持理性的最大进化代数估计;(3)研究交互式遗传算法中用户的不确定性认知规律,给出用户偏好知识提取、表示及更新方法,并结合定向变异,提出了改进算法性能的方法;(4)研究交互式遗传算法中用户的选择性注意认知规律,提出获取用户选择性注意的种群初始化方法和跟踪用户选择性注意的个体生成方法,并给合用户选择性注意知识,提出算法性能改进的方法;(5)研究交互式遗传算法系统的实现,给出交互式遗传算法的系统实现框架、模块划分,并给出基于交互式遗传算法的三维动漫人物造型系统。
本文的研究成果不仅丰富了交互式遗传算法的基础理论,而且为把交互式遗传算法应用于工程实践提供了理论指导。