收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

物联网能耗数据智能分析及其应用平台设计

王杰锋  
【摘要】:随着数据信息时代的迅速到来,建筑能耗也受到了人们的极大关注,能耗数据以其多样化的形式开始呈现急剧增长的趋势,对于海量能耗数据的分析研究显得越来越重要。由于数据挖掘可以对海量数据进行分析,帮助用户更好地发现数据中隐含的有用信息。本文提出运用数据挖掘技术对建筑能耗数据分析,设计物联网能耗数据智能分析系统验证数据挖掘理论研究的可行性,研究的主要内容如下:首先,关联规则数据挖掘理论可以从大量数据的项集中发现有用的规则,建筑用电能耗分项、建筑房间面积和房间人员等属性之间的变化是存在某种关联或者关系的。Apriori关联规则挖掘算法是关联规则理论中最具有典型性的方法,但在它计算频繁项集时需要生成大量的候选项集,并且需要多次扫描数据库,增加了算法的计算复杂度,由于排序索引规则通过索引编号,跳跃搜索项集,可以有效加快信息的检索速率,提出一种基于布尔矩阵和排序索引规则的关联规则挖掘算法,先扫描数据集获取布尔矩阵,再对布尔矩阵进行预处理操作,删除其中无用事务和项集,根据剪枝布尔矩阵和标记序列产生频繁二项集,结合排序索引生成其他频繁项集,有效提高了频繁项集挖掘的效率,并有效减少了内存的占用率。其次,由于聚类挖掘技术作为数据挖掘领域中的一种工具,可以获得数据分布的内在规律,通过聚类数据挖掘方法对数据中心内部设备中的能耗数据进行聚类分析,可以发现异常耗能设备以及根据聚类分析制定合理的用电方案。由于基于密度的聚类方法可以有效发现任意形状的簇和有效识别离群点,可以有效利用密度聚类这一特点发现建筑能耗的内部规则,但在全局参数选择上DBSCAN密度聚类算法需人工干预以及区域查询方式过程复杂和查询易丢失对象等不足,提出一种改进的参数自适应以及区域快速查询的密度聚类算法,有效提高聚类的效率。基于划分的近邻传播聚类算法利用最近邻居关系传递特性,无需初始化聚类中心,可以在比较短的时间内发现更低误差的聚类结果,对处理数据量庞大的能耗数据具有很好的可行性。但在无先验知识条件下存在偏向参数选择困难以及在处理结构复杂或高维数据的数据信息重叠问题,提出基于流形结构邻域选择的局部投影近邻传播算法,在保留数据内部非线性结构的前提下,有效删除高位复杂数据空间中的冗余数据。最后,设计实现物联网建筑能耗数据智能分析系统,以验证提出的关联规则和聚类数据挖掘理论研究的可行性。系统由中心服务器和客户端两部分组成。中心服务器负责实现数据采集、数据挖掘、数据分析、数据存储及数据通信接口等功能,客户端根据restful接口获取服务器端的数据分析结果和能耗数据,实现数据通信、数据解析以及数据可视化等功能,方便管理者监管建筑能耗使用情况,辅助管理者制定节能方案,有效实现对建筑能耗数据的节能目的。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 李业丽,常桂然,徐茜;神经网络在数据挖掘中的应用研究[J];计算机工程与应用;2000年08期
2 陈国萍,李巍,刘仲英;数据挖掘中概念树的标准、生成和实现[J];计算机工程;2000年12期
3 朱天翔,李力;相关案件的数据挖掘[J];计算机应用研究;2000年03期
4 赵丹群;数据挖掘:原理、方法及其应用[J];现代图书情报技术;2000年06期
5 余英泽,廖里,吴渝;一种新型数据分析技术——数据挖掘[J];计算机与现代化;2000年01期
6 邵华 ,万家华 ,金翔义;数据挖掘在证券行业中的应用[J];软件工程师;2000年11期
7 王宏;数据挖掘在网络营销中的应用[J];计算机应用与软件;2000年06期
8 何东峰;数据挖掘要适当[J];互联网周刊;2000年Z1期
9 康松林,费洪晓;数据挖掘的软分类方法[J];长沙铁道学院学报;2001年03期
10 邢平平,施鹏飞,赵奕;基于本体论的数据挖掘方法[J];计算机工程;2001年05期
11 石艳芬;数据挖掘,你做了没有?[J];企业活力;2001年12期
12 ;被隐藏的信息[J];个人电脑;2001年07期
13 糜元根;数据挖掘方法的评述[J];南京化工大学学报(自然科学版);2001年05期
14 李小平,焦李成;数据挖掘中信息颗粒及其构造[J];西安石油学院学报(自然科学版);2001年04期
15 刁力力;胡可云;陆玉昌;石纯一;;数据挖掘与组合学习[J];计算机科学;2001年07期
16 ;数据挖掘有协议[J];每周电脑报;2001年12期
17 ;数据挖掘在家电行业的应用分析[J];电器制造商;2002年01期
18 白红莉,赵芳,侯妍,涂耀文,王伟;数据挖掘在科研试验中的应用研究[J];装备指挥技术学院学报;2002年05期
19 赵连胜,行飞;数据挖掘的任务、对象和方法[J];内蒙古大学学报(自然科学版);2002年02期
20 高岩,胡静涛;Web数据挖掘的原理、方法及用途[J];现代图书情报技术;2002年03期
中国重要会议论文全文数据库 前10条
1 谢中;邱玉辉;;面向商务网站有效性的数据挖掘方法[A];第十八届全国数据库学术会议论文集(技术报告篇)[C];2001年
2 李久丹;陈剑;覃涛;;数据挖掘技术理论研究[A];广西计算机学会2010年学术年会论文集[C];2010年
3 张秋彤;;数据挖掘与高校图书馆个性化信息服务[A];第九届中国不确定系统年会、第五届中国智能计算大会、第十三届中国青年信息与管理学者大会论文集[C];2011年
4 薛鲁华;张楠;;聚类分析在Web数据挖掘中的应用[A];北京市第十三次统计科学讨论会论文选编[C];2006年
5 毛定祥;;数据挖掘与实证经济学[A];2003中国现场统计研究会第十一届学术年会论文集(上)[C];2003年
6 段培俊;周东岱;;数据挖掘研究综述[A];2003年中国智能自动化会议论文集(下册)[C];2003年
7 雷宇;;论行业信息资源的数据挖掘[A];中国烟草行业信息化研讨会论文集[C];2004年
8 吴以凡;吴铁军;欧阳树生;;面向生产过程质量控制的动态数据挖掘方法[A];05'中国自动化产业高峰会议暨中国企业自动化和信息化建设论坛论文集[C];2005年
9 孙明;康红梅;莫一;;数据挖掘在科技奖励管理系统专家库中的应用[A];2005年十二省区市机械工程学会学术年会论文集(湖北专集)[C];2005年
10 邵红全;杨菊梅;潘建雄;;数据挖掘的策略与实现技术[A];中国系统工程学会决策科学专业委员会第六届学术年会论文集[C];2005年
中国博士学位论文全文数据库 前10条
1 杨虎;序列数据挖掘的模型和算法研究[D];重庆大学;2003年
2 巩建光;面向电信领域的数据挖掘关键技术研究[D];哈尔滨工程大学;2012年
3 李建强;基于数据挖掘的电站运行优化理论研究与应用[D];华北电力大学(河北);2006年
4 余小高;电子商务环境中分布式数据挖掘的研究[D];武汉理工大学;2007年
5 李国旗;本体辅助的先验知识融入生物信息数据挖掘的方法研究[D];上海交通大学;2007年
6 翟坤;基于数据挖掘的成本管理方法研究[D];大连理工大学;2012年
7 徐河杭;面向PLM的数据挖掘技术和应用研究[D];浙江大学;2010年
8 刘洪波;汉语认知脑数据挖掘相关算法及应用研究[D];大连理工大学;2006年
9 朱廷劭;数据挖掘及其在汉语文语转换中应用的研究[D];中国科学院研究生院(计算技术研究所);1999年
10 牛成林;增量数据挖掘及其在电站运行优化中的理论研究及应用[D];华北电力大学(北京);2010年
中国重要报纸全文数据库 前10条
1 本报记者褚宁;数据挖掘如“挖金”[N];解放日报;2002年
2 周蓉蓉;数据挖掘需要点想像力[N];计算机世界;2004年
3 □中国电信股份有限公司北京研究院 张舒博 □北京邮电大学计算机科学与技术学院 牛琨;走出数据挖掘的误区[N];人民邮电;2006年
4 《网络世界》记者 王莹;数据挖掘保险业的新蓝海[N];网络世界;2012年
5 刘俊丽;基于地理化的网络数据挖掘与分析提升投资有效性[N];人民邮电;2014年
6 本报记者 连晓东;数据挖掘:金融信息化新热点[N];中国电子报;2002年
7 本报记者 凤小华 朱仁康;“数字挖掘软件”引领中国信息化新浪潮[N];中国电子报;2003年
8 本报记者 史延廷;“成功企业数据挖掘暨数量化管理论坛”在京举办[N];中国旅游报;2002年
9 朱小宁;数据挖掘:信息化战争的基础工程[N];解放军报;2005年
10 本报记者 王小平;从“大集中”走向数据挖掘[N];金融时报;2002年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978