收藏 | 手机打开

Experimental Study on Absorption of CO_2Using DBU Solution in a Bubbling Bed

Nana Agyemang Prempeh  
【摘要】:Anthropogenic activities have been discovered to be the chief contributor to the deterioration of today's climate. Transportation and particularly industrial processes or activities because of its heavily dependence on the use of coal as a source of fuel are just a few and most practical examples that generates billions of pollutants especially greenhouse gases into the atmosphere and the presence of these pollutants adversely causes great havoc to the atmosphere. In order to mitigate climate change, there is a desperate need to reduce CO2emissions from different sources. Carbon Capture and Storage (CCS) offers the opportunity to reduce the CO2emissions associated with the use of fossil fuels. Carbon dioxide capture with a regenerable solvent is considered to be a mature technology, since it is successfully applied as CO2removal technology in industrial applications. Absorption of carbon dioxide (CO2) from flue gas was investigated in a bubbling bed using DBU (1,8-diazabicyclo [5.4.0] undec-7-ene) aqueous solutions. DBU is a typical tertiary amine which has a stoichiometric capability of capturing CO2at1:1ratio. The bubbling bed is a simple tool or device (as per the research would be referred to as "reactor"), within which the absorbent is placed and the CO2absorption also takes place. CO2absorption under six main parameter conditions were studied; the effect of absorbent concentration; the effect of gas flowrate; the effect of solution pH; the effect of solution temperature; the effect of solution height and the effect of solution viscosity. The experimental results showed that DBU solution under conditions of low absorbent concentrations have better collection efficiency whiles concentrations higher than30%collection efficiency remained almost unchanged. The experimental results again showed that the CO2removal efficiency increased with the solution height increasing. CO2removal efficiency increased with increase in solution pH. CO2removal efficiency decreased with both gas flow rate and solution temperature increasing. The last but not the least, increases in solution viscosity leads to an increase in the CO2removal efficiency.

中国期刊全文数据库 前19条
1 Zhiwu Liang;Kaiyun Fu;Raphael Idem;Paitoon Tontiwachwuthikul;;Review on current advances,future challenges and consideration issues for post-combustion CO_2 capture using amine-based absorbents[J];Chinese Journal of Chemical Engineering;2016年02期
2 Tielin Wang;Jon Hovland;Klaus J.Jens;;Amine reclaiming technologies in post-combustion carbon dioxide capture[J];Journal of Environmental Sciences;2015年01期
3 ;Effect of CuO on the efficiency of sulfur capture of Ca-based compounds during coal combustion[J];Journal of Environmental Sciences;2003年03期
4 Edgar G.Hertwich;Martin Aaberg;Bhawna Singh;Anders H.StrΦmman;;为强化石油回采捕集CO_2的全周期评估(英文)[J];Chinese Journal of Chemical Engineering;2008年03期
5 Hai Yu;;Recent developments in aqueous ammonia-based post-combustion CO_2 capture technologies[J];Chinese Journal of Chemical Engineering;2018年11期
6 Yanqiang Huang;Qiang Wang;Jinlong Gong;;Preface to Special Issue: CO_2 capture storage and utilization[J];Journal of Energy Chemistry;2017年05期
7 ;Development of Carbon Dioxide Capture Technologies in Coal-Fired Power Plants[J];Electricity;2010年04期
8 Zhongde Dai;Muhammad Usman;Magne Hillestad;Liyuan Deng;;Modelling of a tubular membrane contactor for pre-combustion CO_2 capture using ionic liquids:Influence of the membrane configuration, absorbent properties and operation parameters[J];Green Energy & Environment;2016年03期
9 ;SGCS-made ultrafine CaO/Al_2O_3 sorbent for cyclic CO_2 capture[J];Chinese Chemical Letters;2011年05期
10 ;Impact of individual acid flue gas components on mercury capture by heat-treated activated carbon[J];Journal of Zhejiang University-Science A(Applied Physics & Engineering);2012年09期
11 Yanhong Wang;Xuemei Lang;Shuanshi Fan;;Hydrate capture CO_2 from shifted synthesis gas, flue gas and sour natural gas or biogas[J];Journal of Energy Chemistry;2013年01期
12 ;Fe-Si promoter for sulfur capture during coal briquette combustion[J];Journal of Environmental Sciences;1997年04期
13 Hongchao Luo;Hirofumi Kanoh;;Fundamentals in CO_2 capture of Na_2CO_3 under a moist condition[J];Journal of Energy Chemistry;2017年05期
14 Lars H.Holbech;Francis Gbogbo;Timothy Khan Aikins;;Abundance and prey capture success of Common Terns(Sterna hirundo) and Pied Kingfishers(Ceryle rudis) in relation to water clarity in south-east coastal Ghana[J];Avian Research;2018年03期
15 陈江星;郑强;黄春云;徐江荣;应和平;;Interaction of Pair Particles Mediated by Signal Molecules[J];Chinese Physics Letters;2016年01期
16 ZHANG Tong;QUAN Wei;ZHENG Wei-ming;WU Ji-zong;KANG Hai-ying;DENG Wei-qin;SHAO Shao-xiong;;Magnetically Assisted Sample Preparation Method for Trace Np Analysis by XRF[J];Annual Report of China Institute of Atomic Energy;2016年00期
17 Miles Brown;Scott Hobden;;Effective goaf gas capture design at Ravensworth Underground Mine[J];International Journal of Mining Science and Technology;2014年03期
18 ;Review of techniques for motion capture data processing[J];Computer Aided Drafting,Design and Manufacturing;2012年01期
19 ;Preparation and kinetic analysis of Li_4SiO_4 sorbents with different silicon sources for high temperature CO_2 capture[J];Chinese Science Bulletin;2012年19期
中国重要会议论文全文数据库 前10条
1 Baoxin Dai;Xiao Wu;Xiufan Liang;Jiong Shen;;Model Predictive Control of Post-combustion CO_2 Capture System for Coal-fired Power Plants[A];第36届中国控制会议论文集(F)[C];2017年
2 LIAN Peng;DENG Hua-kai;;The Optimizing for Forecast of Fishery Products in China Based on Grey Model[A];2015中国渔业经济专家研讨会——认识经济新常态 运筹渔业十三五论文集[C];2015年
3 Jing-Wen Wang;Chen Chen;Yao-Jia Li;Yang-Hui Luo;Bai-Wang Sun;;In-situ capture of CO_2 by using mononuclear complex cation[A];中国化学会第八届全国配位化学会议论文集-论文[C];2017年
4 Shan-Shan Qin;Zhi-Wu Yu;;Mechanism of C1 domains to capture diacylglycerols as revealed by multiscale molecular dynamics simulations[A];第十七届全国化学热力学和热分析学术会议论文集[C];2014年
5 ;A Storage Structure and Capture Judging Algorithm of Realizing the Computer Game Program of Surakarta Chess[A];Proceedings of the 2011 Chinese Control and Decision Conference(CCDC)[C];2011年
6 Ph Arbeille;F Cloppet;A Boucher;A Capri;N Vincent;;Two options for Tele-echography:(a)a robotic arm,ISDN or Satellite lines,(b)a volumic echographic capture system,and internet(Fetal and Abdominal application)[A];庆祝中国超声诊断50年暨第十届全国超声医学学术会议论文汇编[C];2008年
7 ;Roles of the pretectum in prey capture of zebrafish larvae[A];中国神经科学学会第九届全国学术会议暨第五次会员代表大会论文摘要集[C];2011年
9 Ying Zhang;Peisong Li;;Key Management Scheme Based on Nodes Capture Probability for Wireless Sensor Networks[A];第30届中国控制与决策会议论文集(4)[C];2018年
10 LI Shi-zhuo;WU Shao-yong;LI Chao-li;WANG Xiang-gao;GONG Jie;HE Ming;RUAN Xiang-dong;JIANG Shan;;The Distribution of Cosmogenic ~(36)Chlorine in Da Shiwei Tiankeng[A];Annual Report of China Institute of Atomic Energy 2009[C];2010年
中国博士学位论文全文数据库 前6条
1 Amir Abu Baker Musa Abd Elgader;670t/h多燃料切圆锅炉NO_x生成与排放控制数值模拟[D];华中科技大学;2012年
2 刘海峰;均质压燃非均匀性及生物燃料低温燃烧光学诊断试验研究[D];天津大学;2011年
3 Najid Ahmad;[D];东北财经大学;2017年
4 钱成;二维异孔共价有机框架构筑新策略的研究[D];湖南大学;2018年
5 葛苏;[D];俄勒岗健康医科大学;1992年
6 石义(Ojekunle Olusheyi Zaccheaus);基于全球气候变化的灵敏度模型对中国可持续发展的研究[D];天津大学;2010年
中国硕士学位论文全文数据库 前10条
1 Nana Agyemang Prempeh;[D];南京信息工程大学;2012年
2 Mohsen Taheri(木森);[D];北京化工大学;2016年
3 李波;超高频RFID系统Capture效应下防碰撞算法研究及读写器码元同步器设计[D];复旦大学;2010年
4 NDIHOKUBWAYO;[D];武汉理工大学;2006年
5 Pelin Kinay;[D];苏州大学;2014年
6 王兴;基于不同压缩比HCNG发动机试验与仿真模拟对比研究[D];清华大学;2012年
7 Adam W. Matteson;[D];上海交通大学;2015年
8 张翔;生态术语的翻译[D];中南林业科技大学;2018年
9 余书法(Youssoupha NGOM);协同设计环境下的分析推理设计研究[D];华中科技大学;2013年
10 萨满(MUHAMMAD SALMAN KHALID);干湿变化,氮肥,DCD和水稻秸秆对稻田土壤N_2O,CH_4和CO_2排放的影响[D];华中农业大学;2018年
中国重要报纸全文数据库 前2条
1 侯空;全方位屏幕捕捉器Ultrasnap[N];电脑报;2001年
2 中国海关总署信息中心 戴阳;用网管工具抗DDoS[N];计算机世界;2003年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978