收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

基于稀疏表示与自适应倒易晶胞的遥感图像复原方法研究

贺妍斐  
【摘要】:遥感图像在航天、国防和军事等多个领域都起着至关重要的作用。获取遥感图像需经过遥感器成像、采样系统、电子信号等多个环节,各环节均会对图像质量造成不同程度的影响,导致图像退化,制约了遥感图像的定量分析及后续处理。因此,提高图像质量,增强图像分辨率成为了遥感界的前沿课题。本文在探讨遥感图像成像机制的基础上,着重研究如何更准确、高效的降低图像的噪声及模糊,从而提高图像质量,满足应用领域对模型实时性的要求。在实际应用方面,分别开展了稀疏表示模型与自适应倒易晶胞理论的复原方法。稀疏表示是用字典中少量原子的线性组合表示图像,从而提取图像的本质特征,该方法为图像处理提供了新的研究视角。白适应倒易晶胞复原方法是面向遥感图像的一种方法,该方法通过对频谱单元进行合理约束,再结合传统的图像复原方法,最终完成遥感图像去噪、去混叠的处理。论文的主要工作包括以下内容:(1)深入研究了基于图像去噪的非局部稀疏表示方法。该方法首先利用图像的结构相似性,构造非局部正则项,并将其引入到传统的稀疏表示模型中。其次,采用优化方法的思想,通过构建易于求解的替代函数,提出了基于非局部框架的优化最小化稀疏表示与字典学习方法,此方法能保证每一次迭代求解的值在局部范围内最优。最后,利用标准测试图像及遥感图像验证该方法的有效性。(2)提出一种基于自适应倒易晶胞库的遥感图像总变分复原模型。该模型通过分析自适应倒易晶胞理论,并结合图像的结构相似性,构造了分段线性形式的自适应倒易晶胞库。其次,在总变分框架下,构建了基于自适应倒易晶胞库的组间正则化模型。同时,为了克服阶梯效应,引入梯度保真项。最后使用分裂算法求解模型。此模型能够得到理想的遥感图像复原结果。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 李映;张艳宁;许星;;基于信号稀疏表示的形态成分分析:进展和展望[J];电子学报;2009年01期
2 赵瑞珍;王飞;罗阿理;张彦霞;;基于稀疏表示的谱线自动提取方法[J];光谱学与光谱分析;2009年07期
3 杨蜀秦;宁纪锋;何东健;;基于稀疏表示的大米品种识别[J];农业工程学报;2011年03期
4 史加荣;杨威;魏宗田;;基于非负稀疏表示的人脸识别[J];计算机工程与设计;2012年05期
5 高志荣;熊承义;笪邦友;;改进的基于残差加权的稀疏表示人脸识别[J];中南民族大学学报(自然科学版);2012年03期
6 朱杰;杨万扣;唐振民;;基于字典学习的核稀疏表示人脸识别方法[J];模式识别与人工智能;2012年05期
7 耿耀君;张军英;袁细国;;一种基于稀疏表示系数的特征相关性测度[J];模式识别与人工智能;2013年01期
8 张疆勤;廖海斌;李原;;基于因子分析与稀疏表示的多姿态人脸识别[J];计算机工程与应用;2013年05期
9 李正周;王会改;刘梅;丁浩;金钢;;基于形态成分稀疏表示的红外小弱目标检测[J];弹箭与制导学报;2013年04期
10 胡正平;赵淑欢;李静;;基于块稀疏递推残差分析的稀疏表示遮挡鲁棒识别算法研究[J];模式识别与人工智能;2014年01期
11 陈思宝;赵令;罗斌;;局部保持的稀疏表示字典学习[J];华南理工大学学报(自然科学版);2014年01期
12 王铿;张重阳;齐朗晔;;基于核距离的稀疏表示的交通标识识别[J];计算机应用与软件;2014年03期
13 单建华;张晓飞;;稀疏表示人脸识别的关键问题分析[J];安徽工业大学学报(自然科学版);2014年02期
14 栾悉道;王卫威;谢毓湘;张芯;李琛;;非线性稀疏表示理论及其应用[J];计算机科学;2014年08期
15 杨荣根;任明武;杨静宇;;基于稀疏表示的人脸识别方法[J];计算机科学;2010年09期
16 郑轶;蔡体健;;稀疏表示的人脸识别及其优化算法[J];华东交通大学学报;2012年01期
17 段菲;章毓晋;;一种面向稀疏表示的最大间隔字典学习算法[J];清华大学学报(自然科学版);2012年04期
18 李仲生;李仁发;蔡则苏;赵乘麟;;稀疏表示下的非监督显著对象提取[J];电子学报;2012年06期
19 段菲;章毓晋;;基于多尺度稀疏表示的场景分类[J];计算机应用研究;2012年10期
20 胡正平;李静;白洋;;基于样本-扩展差分模板的联合双稀疏表示人脸识别[J];信号处理;2012年12期
中国重要会议论文全文数据库 前3条
1 何爱香;刘玉春;魏广芬;;基于稀疏表示的煤矸界面识别研究[A];虚拟运营与云计算——第十八届全国青年通信学术年会论文集(上册)[C];2013年
2 樊亚翔;孙浩;周石琳;邹焕新;;基于元样本稀疏表示的多视角目标识别[A];2013年中国智能自动化学术会议论文集(第五分册)[C];2013年
3 葛凤翔;任岁玲;郭鑫;郭良浩;孙波;;微弱信号处理及其研究进展[A];中国声学学会水声学分会2013年全国水声学学术会议论文集[C];2013年
中国博士学位论文全文数据库 前10条
1 李进明;基于稀疏表示的图像超分辨率重建方法研究[D];重庆大学;2015年
2 王亚宁;基于信号稀疏表示的电机故障诊断研究[D];河北工业大学;2014年
3 姚明海;视频异常事件检测与认证方法研究[D];东北师范大学;2015年
4 李小薪;稀疏表示的分段匹配寻踪方法[D];华南理工大学;2009年
5 何艳敏;稀疏表示在图像压缩和去噪中的应用研究[D];电子科技大学;2011年
6 宋相法;基于稀疏表示和集成学习的若干分类问题研究[D];西安电子科技大学;2013年
7 匡金骏;基于稀疏表示的图像分类与目标跟踪研究[D];重庆大学;2013年
8 李海山;基于稀疏表示理论的地震信号处理方法研究[D];中国石油大学(华东);2013年
9 邓承志;图像稀疏表示理论及其应用研究[D];华中科技大学;2008年
10 路锦正;基于稀疏表示的图像超分辨率重构技术研究[D];电子科技大学;2013年
中国硕士学位论文全文数据库 前10条
1 王道文;基于稀疏表示的目标跟踪算法研究[D];华南理工大学;2015年
2 李哲;基于稀疏表示和LS-SVM的心电信号分类[D];河北大学;2015年
3 孙雪青;Shearlet变换和稀疏表示相结合的甲状腺结节图像融合[D];河北大学;2015年
4 吴丽璇;基于稀疏表示的微聚焦X射线图像去噪方法[D];华南理工大学;2015年
5 赵孝磊;基于图像分块稀疏表示的人脸识别算法研究[D];南京信息工程大学;2015年
6 黄志明;基于辨别式稀疏字典学习的视觉追踪算法研究[D];华南理工大学;2015年
7 张铃华;非约束环境下的稀疏表示人脸识别算法研究[D];南京信息工程大学;2015年
8 贺妍斐;基于稀疏表示与自适应倒易晶胞的遥感图像复原方法研究[D];南京信息工程大学;2015年
9 杨烁;电能质量扰动信号的稀疏表示/压缩采样研究[D];西南交通大学;2015年
10 应艳丽;基于低秩稀疏表示的目标跟踪算法研究[D];西南交通大学;2015年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978