中国太阳能长期变化及计算方法研究
【摘要】:
太阳能是地球系统几乎唯一的能量来源,对其长期变化和空间分布的研究历来是气候学研究的重要课题,同时也是可再生能源产业发展的重要前提。本文从1961-2007年中国太阳能长期变化的观测事实出发,结合主要的气象和环境要素,探讨了中国太阳能长期变化的成因,并考虑主要影响因子对辐射传输过程的影响,研制出了完全基于卫星资料的地表太阳能计算模型。主要结果如下:
1)中国太阳能的长期变化存在明显的区域性和季节性。近50年来,我国太阳能总体下降趋势显著,其中尤以东、南部地区下降最为明显,同时也表现出较明显的“前期变暗”和“后期变亮”的特点,但其变化存在明显的“区域性”和“季节性”。就区域性而言,“变暗”是普遍的,但“变亮”主要发生在新疆北部、东北北部和南方大部;就季节性而言,“变暗期”四季的变化方向基本一致,只是变化幅度有不同,普遍表现为夏、冬季下降强于春、秋季:“变亮期”四季的变化方向差异较大,不同季节对“变亮”的贡献明显不同,“变亮”主要发生在春、夏季。
2)不同地区导致太阳能下降的主要因素有明显差异,在人类活动较剧烈的东部地区,下降主要是由气溶胶的增多所致,表现为轻雾和(或)霾的增加,而在西部地区,则主要是由气候湿润化的大背景所致,表现为低云和水汽的增加。
3)通过建立数学模型,将云对太阳能变化的作用从众多因素中分离出来,考察了云和环境因素对太阳能长期变化的作用差异。结果表明,云量和环境因素对中国太阳能的变化均有重要作用,但有明显的区域性和阶段性差异。环境因素对阳光削弱作用的增强(气溶胶增多,环境恶化)是绝大部分地区地表太阳能下降的共有原因,其中对于新疆和东南地区而言,“有效云量”的增加对此作用也较大(贡献率约为13%-35%)。自20世纪90年代初起,大部分地区太阳能的下降基本停止,一些地区甚至略有回升,但成因不尽相同:北疆和云南的回升主要缘于环境的好转(贡献率100%):中南地区及四川盆地的回升主要缘于有效云量的减少(贡献率100%):东北北部和东南地区的回升则是环境好转和有效云量减少共同作用的结果,且环境好转的贡献较大(对两个区域的贡献率分别达60%和80%);南疆和西北地区东部下降趋势的减缓也主要是环境好转的结果。受“有效云量”增加的影响,西北地区中部、东北大部及华北平原的太阳能依然呈明显的下降趋势,其中对于华北平原而言,环境的持续恶化也是重要原因(贡献15.9%)。“夏、冬季下降强于春、秋季”是我国太阳能下降的普遍特点,这主要是由云量变化方向和变化强度的季节性差异导致。通过云的变化和环境因素的变化可以较好地解释中国太阳能的变化。
4)通过能够引起光学视程障碍的天气现象日数分析了不同地区导致太阳能变化的主导环境因素。西部地区的环境状况表现为“前期恶化,后期好转”,且环境的恶化/好转均与烟幕和沙尘的增加/减少密切相关。轻雾和(或)霾是东、南部地区环境恶化的主导因子,且这些因子作用表现为持续的增强,因此环境状况并无好转。在地表太阳能计算中,必须考虑环境因素的作用。
5)太阳能的变化伴随着辐射成分的变化。“变暗期”,直接辐射所占的比例减少;“变亮期”,直接辐射所占的比例也开始增加。
6)对比介绍了主流太阳能计算模型,应用目前使用最广泛的日照百分率模型对中国的太阳能资源做了评估,并指出了发展新模型的必要性。结果表明,“高原大于平原,西部干旱区大于东部湿润区”是我国太阳能资源分布的基本态势,“强处更强,愈强愈稳”是资源时空变化的主要特征。与欧洲的太阳能利用发达的国家相比,中国的太阳能资源非常丰富,太阳能最少的四川盆地与欧洲一些国家相比,总辐射资源量并不逊色,未来在太阳能开发利用方面存在很大潜力。直射比的分布与太阳能资源本身的分布较为一致,在海拔较高或较干燥的地区,太阳辐射以直接辐射为主,在较湿润地区,以散射辐射为主,在开发利用太阳能时必须要考虑资源的辐射成分特点。实践证明,经验模型使用方便,在地形平坦、大气环境状况较单一的地区精度很高,但由于完全依赖于地面观测,在地形较复杂、或者大气环境状况区域性较强的地区,计算结果存在较大的不确定性,因此,有必要综合考虑地形、云及大气环境状况对辐射传输过程的影响发展新的计算模型,并指出卫星资料应用的必要性。
7)借助Bird晴天辐射计算模型,以卫星探测的大气环境资料为输入,计算了晴天地表太阳辐射,数值实验结果表明,受地形和大气环境因素的作用,晴天太阳辐射的空间分布在很大程度上偏离了纬向分布,其中,以气溶胶的作用最为显著。
8)应用卫星资料,考虑大气中各主要因素对辐射传输过程的影响,建立了新的地表太阳能计算模型,为解决中国地面太阳能数据的空间连续性问题提供了有效的手段。新模型对直接辐射、散射辐射和总辐射历年逐月值计算的平均相对误差(MAPE)分别为22.1%、18.3%和11.6%,均方根误差(RMSE)分别为13.20kWh.m~(-2)、12.85 kWh.m~(-2)和16.39 kWh.m~(-2)。计算结果可以较好地反映出天文、地理、气象和环境要素对地表太阳能分布的作用。该方法物理意义明显,输入资料获取方便,且计算效果较好,有利于实际应用和推广。绘制了中国太阳辐射各分量2005-2007年平均的年及四季的分布图。
|
|
|
|
1 |
任国泰;关于东亚大陆磁场的研究[J];地球物理学报;1981年04期 |
2 |
高布锡;;核幔耦合引起的黄赤交角长期变化[J];天文学报;1983年02期 |
3 |
陈子雄;凌兆芬;;黄赤交角的长期变化[J];南京大学学报(自然科学版);1982年03期 |
4 |
安振昌;地磁场模型和冠谐分析[J];地球物理学进展;1992年03期 |
5 |
马石庄
,徐升
,陆文松;地球磁场长期变化动力学的Hamilton形式[J];地球物理学进展;1993年02期 |
6 |
王德瀚;长江宜昌站枯季径流长期变化的分析[J];科技通报;1994年03期 |
7 |
武炳义,黄荣辉,高登义;冬季北极海冰长期变化对华北降水的可能影响[J];高原气象;1999年04期 |
8 |
韦桂峰;广东大亚湾西南部海域营养盐结构的长期变化[J];生态科学;2005年01期 |
9 |
安振昌;根据IGRF计算1995~2000年中国及邻区地磁长期变化[J];地球物理学进展;1998年03期 |
10 |
方国洪,王凯,郭丰义,魏泽勋,范文静,张冬生,毕家胜;近30年渤海水文和气象状况的长期变化及其相互关系[J];海洋与湖沼;2002年05期 |
11 |
李伟;康国发;白春华;高国明;;过去2000年以来地磁偶极子的长期变化[J];地震地磁观测与研究;2006年02期 |
12 |
白春华;康国发;高国明;;地球主磁场的周期性特征[J];云南大学学报(自然科学版);2007年01期 |
13 |
许以平
,苏炳凯;北半球副高带的长期变化(五)[J];气象;1980年07期 |
14 |
刘次沅;地球自转长期变化的最新结果[J];陕西天文台台刊;1994年00期 |
15 |
白春华,康国发,李伟;近300年来的地磁场总能量在地球内部的分布及长期变化[J];云南大学学报(自然科学版);2005年04期 |
16 |
徐文耀;Henri-Claud Nataf;魏自刚;杜爱民;;地磁场长期变化速率的30年周期[J];地球物理学报;2006年05期 |
17 |
王颖;封国林;施能;甄淑红;;江苏省雨日及降水量的气候变化研究[J];气象科学;2007年03期 |
18 |
王斌;非绝热有限振幅超长波的演变和大气环流的中长期变化[J];中国科学B辑;1982年06期 |
19 |
高布锡;;惯性耦合对黄赤交角长期变化率的影响(摘要)[J];时间频率学报;1982年02期 |
20 |
林云芳,曾小苹,郭启华;东亚地区地磁非偶极场长期变化的分析[J];地球物理学报;1985年05期 |
|