基于空分压缩余热驱动的自增效多级空压流程设计优化与实验研究
【摘要】:低温空分系统能耗高、技术复杂,其投资成本在石化、冶金等行业内占总投资成本的比例较高。以钢铁行业为例,空分设备能耗成本占钢铁企业总能耗的15-20%。围绕我国“碳达峰、碳中和”目标,进一步降低空分系统能耗对于实现工业领域节能减排至关重要。从低温空分系统发展历史来看,实现空分系统节能的主要方法分别为,降低系统压力等级和减少部机压力损失两种节能途径,而对目前的第六代空分系统而言,进一步降低压缩机排气压力已经十分困难,用于减小系统压损的分子筛、增压膨胀机、规整填料等核心部机技术也基本发展成熟。空压流程作为与两种节能途径都相关的主要耗能单元,过程余热量巨大,而空分系统缺乏与之匹配的需求端,存在显著的余热“供需失衡”矛盾,亟需探索适合空分应用场合的新型压缩余热利用方法。基于此,本文提出了基于过程余热的“因地制宜、就地利用”的空压流程节能方案,以实现空压流程节能化技术应用,从系统设计、匹配优化和实验验证方面分别验证了系统原理、经济及技术可行性,为实现空压流程余热利用节能技术的工业应用,提供了理论设计及实验验证基础。主要工作如下:1)首次提出了自增效多级空压流程,建立了针对性综合性能评价方法,验证了系统原理可行性。基于各级压缩出口余热量大且分散的特性,提出并建立了基于空气压缩流程基础布局的自增效多级空压流程。利用有机朗肯蒸气压缩系统(ORC-VCR),回收多级压缩出口余热用于驱动制冷系统,并将制冷量反哺用于冷却各级压缩入口空气,以达到降低压缩功耗的目的。为实现该流程的综合性能评估,本文分别基于热力学第一定律、第二定律和系统经济性评价,给出了该系统的各类评价指标,分别讨论了能量分配、工况变化和参数设置等方面对系统热力学及经济性能的影响。计算结果显示,6万规模空分系统节能率可达到3.6%,年节省成本为273万元,验证了系统的原理可行性。2)建立了基于萤火虫算法的性能优化方案,揭示了内部系统因素匹配优化机理和外部环境因素的性能影响机制,验证了系统经济可行性。分析了各级余热回收与冷量分配为主的内因对自增效空压流程性能影响趋势,系统性能影响权重较大的因素主要为,二级压缩出入口回收余热量及分配制冷量。在此基础上建立了以高、低温蒸发器为能量分配载体的萤火虫优化算法,以各级蒸发器换热尺寸为优化参数,以生命周期内节省成本LCS和节省能量平均成本LCOE为优化目标,分别进行系统优化设计。针对典型地区杭州和银川设计的自增效多级空压流程,优化设计后的节能率ESR可分别达到4.3%和3.7%,生命周期节省成本LCS分别可达到6,695和5,590万元,回收周期最短分别为4.1和4.3年,验证了该流程系统的经济可行性。3)设计搭建了国内首套ORC-VCR实验平台,开展实验研究系统的工况稳定设计方法及系统性能影响规律,初步验证了系统技术可行性。设计并搭建了ORC-VCR实验系统,针对同轴膨胀压缩机稳定运行条件进行了气浮供液稳定性测试、轴向力稳定性测试、电机冷却性能测试。轴承供液方面,膨胀压缩机中轴承压差可控制在0.53-0.63 MPa之间,气浮供液量充足;电机冷却性能方面,通过PID控制,膨胀压缩机腔温度可在开机后30 min内稳定在40℃左右;轴向力平衡方面,采用电机辅助方法,膨胀压缩机内的轴向力可保证在系统安全范围内,机腔振动值不超过0.2 mm/s,验证了实验辅助系统的可靠性和安全性。制冷性能研究方面,系统COP基本随着高/低温蒸发压比PH/PL的升高呈现线性下降的趋势,膨胀压缩机工作负荷可通过节流阀开度,约在正常工况的40%-100%范围内进行调节。在转速26,000 rpm且旁通阀开度0%的基础工况下,系统制冷量为14.2 k W,制冷温度为14.6℃,系统COP最高为0.63,基本满足理论优化系统对制冷能力要求,验证了系统技术可行性。