收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

Study on Influence of Silicon on Growth and Physiology of Tomato (Lycopersicon Esculentum Mill cv) Plant Grown under Salt Stress Conditions

Khalid Al-aghabary  
【摘要】: This study investigated the possible involvement of antioxidative enzymes, photosynthetic ability, growth response to salt stress and the effect of Si to induce tolerance against salt stress in tomato (Lycopersicon esculentum M.cv.) plants. This study was carried out in Institute of Vegetable Science, Deprtament of Horticulture, Huajiachi campus, Zhejiang University, Hangzhou, China during 2000 - 2003. Results obtained were statistically analysed for examining their significance influence and they were discussed below. Tomato plants were grown in nutrient solution, NaCl, Si or Mn was added to induce the stress at different concentrations. Silicon the mineral substrate is the most abundant element in the soils for most of the world's plants. The ability of Si to ameliorate the negative effect of NaCl on growth rate was well documented. Improvement of plant growth by addition of Si is beneficial for increased tissue tolerance to high Manganese concentrations, to alleviate both biotic and a biotic stress in plants. In our study added silicon significantly increased the SOD, CAT, DR, GR activity and decreased GPOD, APX activity, MDA concentrations and H2O2 levels in tomato leaves under different salt stress concentrations. Addition of Si to the nutrient solution decreases the proline content and ascorbic acid under 150, 200 mM NaCl as compared to salt treated plants without Si. Si enhanced enzymes activity protecting the plant tissues from membrane oxidative damage induced by salt, thus mitigating salt toxicity and improving the growth of tomato plants. Our results showed that the scavenging system form the primary defense line in protecting the chloroplasts against superoxide radicals in tomato plants. This indicates that Si may act to alleviate salt stress in tomato by decreasing the permeability of plasma membrane, maintaince of cell form and structure. The dry matter production was increases due to better photosynthesis under salt stress upon addition of Si overall growth of salinised tomato plants could be improved by addition of Si. Addition of Si not significantly influenced on photosynthesis, stomatol conductance, and enzymes activities when plants were grown under salt stress induced with low salt concentration 50 mM NaCl. Under higher salt concentration induced salinity 100, 150, 200 mM NaCl, the alleviation effect of Si was noticed interns of improvement in photosynthetic ability, growth, and enzyme activity in tomato plants. In another experiment, influence of Si on tomato plants grown under with or without higher Mn concentration. In these experiment treatments except dry matter of root, different treatments influence significantly the dry matter accumulation in different parts of plants. Silicon supply only during preculture resulted in significantly higher dry matter accumulation of leaves at normal Mn concentration. Si supplies during preculture recorded significantly higher dry weight, SOD, CAT, DR activities in tomato plants at higher Mn treatment. This indicates that Si supply during the preculture alleviated the effect of Mn toxicity due to ameliorating effect of Si. Si supplies at higher Mn treatment resulted in reduction of GPOD, APX activity. The nutrient solution containing Mn and Si incorporated into the cell walls during pretreatment has a similar or even stronger beneficial effect than Si supplied at higher Mn treatment. Addition of Si to the nutrient solution had improved the tomato plants by raising photosynthesis activity (Pn), stomotal conductance (gs), intercellular CO2 (Ci), chlorophyll content and chlorophyll fluorescence parameters (Fv/Fm, PSII, ETR, Fv'/Fm') had exchanged by addition of Si in the presence of 150, 200 mM NaCl after 7th day of treatments. Salt treated plant depresses the photosynthetic capacity, chlorophyll content and chlorophyll fluorescence of tomato in the absence of Si. Addition of Si to the nutrient solution resulted on increases plasma membrane H+ -ATPase, tonoplast H+ PPase in both leaf, root of tomato plants and decreases the tonoplast H+ -ATPa


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 ZHANG Yi;SHI Yu;GONG Hai-jun;ZHAO Hai-liang;LI Huan-li;HU Yan-hong;WANG Yi-chao;;Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress[J];Journal of Integrative Agriculture;2018年10期
2 董静,邬飞波,张国平;Effect of cadmium on growth and photosynthesis of tomato seedlings[J];Journal of Zhejiang University Science;2005年10期
3 WU Ya-wei;LI Qiang;JIN Rong;CHEN Wei;LIU Xiao-lin;KONG Fan-lei;KE Yong-pei;SHI Hai-chun;YUAN Ji-chao;;Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low-nitrogen tolerances[J];Journal of Integrative Agriculture;2019年06期
4 ;Distribution of chlorophyll a, photosynthesis and their relations to the environmental factors in the Central South China Sea[J];Acta Oceanologica Sinica;1990年04期
5 ;Joint Liver Center run by UCLA and First Affiliated Hospital,Zhejiang University School of Medicine was established at Hangzhou,China[J];Hepatobiliary & Pancreatic Diseases International;2011年04期
6 ZHU Xinguang;;Systems Biology Research of Photosynthesis for Greater Crop Yields[J];Bulletin of the Chinese Academy of Sciences;2014年02期
7 ;High Potassium Aggravates the Oxidative Stress Inducedy by Magnesium Deficiency in Rice Leaves[J];Pedosphere;2008年03期
8 周洁;郭兰萍;张霁;周树峰;杨光;赵曼茜;黄璐琦;;Effects of LaCl_3 on photosynthesis and the accumulation of tanshinones and salvianolic acids in Salvia miltiorrhiza seedlings[J];Journal of Rare Earths;2011年05期
9 ;Thermostability of photosynthesis in two new chlorophyll b-less rice mutants[J];Science in China(Series C:Life Sciences);2005年02期
10 ;Influences of excessive Cu on photosynthesis and growth in ectomycorrhizal Pinus sylvestris seedlings[J];Journal of Environmental Sciences;2004年03期
11 ;Fuchun Environmental-Dongshun Group Launched the 100,000 t/a High-grade Household Paper Project in Hangzhou Fuyang[J];造纸信息;2016年08期
12 曲克明,辛福言;Enhancement Effects of Three Rare Earth Elements on the Growth of Chaetoceros Mulleri[J];Marine Science Bulletin;2001年02期
13 ;The Responses of Morphological Trait,Leaf Ultrastructure,Photosynthetic and Biochemical Performance of Tomato to Differential Light Availabilities[J];Agricultural Sciences in China;2011年12期
14 刘刚;;我国植物抗病抗逆研究取得重要进展[J];农药市场信息;2015年23期
15 ;Revolutionary Breakthroughs in Photosynthesis and “Artii cial Chloroplast”[J];Bulletin of the Chinese Academy of Sciences;2014年01期
16 ;The Changes of Photosynthetic Properties and Cell Microstructure in Peanut Leaves during Leaf Senescence[J];Agricultural Sciences in China;2002年04期
17 ;Effects of S3307 on the photosynthesis,the activity of SOD,and MDA content of rice flag leaf[J];Chinese Rice Research Newsletter;2001年03期
18 杜林方,梁厚果;Isolation of a CP24-LHC n Complex of Photosystem n Antenna[J];Chinese Science Bulletin;1994年08期
19 杨小冰,曾士迈;STUDIES ON CROP LOSS CAUSED BY STRIPE RUST ON WINTER WHEAT (Ⅱ)——EFFECT OF DISEASE ON THE LEAF PHOTOSYNTHESIS[J];Science in China,Ser.B;1988年06期
20 ;CAS-TWAS Centre of Excellence for Biotechnology[J];Bulletin of the Chinese Academy of Sciences;2013年04期
中国重要会议论文全文数据库 前10条
1 Liu Zheng;Xuelian He;Wenmin Qiu;Xiaojiao Han;Mingying Liu;Zhengquan He;Renying Zhuo;;The research of photosynthesis and chlorophyll fluorescent parameters variation between two species of Sedum under cadmium treatment[A];2016年全国植物生物学大会摘要集[C];2016年
2 ;A mechanistic model for photosynthesis based on the light energy absorption of light-harvesting chlorophyll in photosystem[A];第十六届全国原子与分子物理学术会议论文摘要集[C];2011年
3 ;Effects of iron limitation on the growth and photosynthesis of four marine Synechococcus strains[A];庆祝中国藻类学会成立30周年暨第十五次学术讨论会摘要集[C];2009年
4 Qingfeng Song;;Canopy photosynthesis modeling and phenotyping to guide crop breeding[A];2017全国植物表型组学研讨会摘要集[C];2017年
5 ;Systems properties of C4 photosynthesis and its evolution path[A];从植物科学到农业发展——2012全国植物生物学大会论文集[C];2012年
6 ;Effects of soil fertility and artificial defoliation on photosynthesis and growth of Solidago canadensis[A];第二届中国甘草学术研讨会暨第二届新疆植物资源开发、利用与保护学术研讨会论文摘要集[C];2004年
7 Neil M.Price;;Different responses of four marine Synechococcus strains to the environmentally relevant concentration of nickel:the growth,photosynthesis and superoxide dismutase[A];2007中国植物生理学会全国学术会议论文摘要汇编[C];2007年
8 ;Synthesis and fluorescence spectra of a series of novel model compounds for photosynthesis reaction center[A];第九届全国发光学术会议摘要集[C];2001年
9 Neil M.Price;;Different responses of four marine Synechococcus strains to the environmentally relevant concentration of nickel:the growth,photosynthesis and superoxide dismutase[A];中国海洋湖沼学会藻类学分会第七届会员大会暨第十四次学术讨论会论文摘要集[C];2007年
10 Neil M.Price;;Different responses of four marine Synechococcus strains to the environmentally relevant concentration of nickel:the growth,photosynthesis and superoxide dismutase[A];湖北省植物生理学会第十五次学术研讨会论文集[C];2007年
中国博士学位论文全文数据库 前7条
1 Khalid Al-aghabary;[D];浙江大学;2003年
2 MOHAMED EWAS ELMETWALY HAMAD;[D];华中农业大学;2017年
3 王长春;番茄Cf-4和Cf-9基因介导的过敏性反应调控及基因沉默技术的研究[D];浙江大学;2005年
4 陈蔚;基于演化动力学的合作涌现研究[D];西安电子科技大学;2017年
5 慕尼尔(Shoaib Munir);番茄钙调素类蛋白(CML)全基因组鉴定与功能分析[D];华中农业大学;2016年
6 朴明勋;韩国与朝鲜经济合作研究[D];吉林大学;2012年
7 Muhammad Jaffar Hassan;镉毒害对水稻生育与抗氧化酶的影响及其对锌、硫和氮素形态的反应[D];浙江大学;2004年
中国硕士学位论文全文数据库 前10条
1 Presidor Kendabie;[D];浙江大学;2002年
2 NZOJIYOBIRI Jean-Berchmans;[D];浙江大学;2002年
3 王怡婷;2016年杭州G20峰会宣传片研究[D];兰州理工大学;2018年
4 Joshua Appoh;[D];南京信息工程大学;2012年
5 孔婷婷;小组合作学习对九年级学生英语学习影响的实证研究[D];伊犁师范大学;2019年
6 Doron Cucos;[D];上海交通大学;2015年
7 Idris Talha KARTAV;“一带一路”倡议下土耳其与中国合作分析[D];厦门大学;2018年
8 张琪;合作原则的遵守与违反在庭审话语中的应用[D];广东外语外贸大学;2018年
9 刘霜;广西面向文莱宣传资料翻译实践报告[D];广西大学;2018年
10 刘翠红;问题诱因在有稿同传和无稿同传中的对比实践报告[D];陕西师范大学;2018年
中国重要报纸全文数据库 前1条
1 中国科学技术信息研究所研究员 武夷山 编译;科学“非知”:观察争端的新视角[N];科学时报;2011年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978