收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

计量经济模型中非参数M估计的渐近理论

陈佳  
【摘要】: 在过去的几十年中,越来越多的研究者用非参数方法来对统计模型中的回归函数进行估计。很多估计方法以及估计量都已经被提出并得到了发展,如核估计,样条估计,局部回归估计以及正交序列估计方法等。非参数估计的理论以及实际应用都已经得到了系统的研究。至今,非参数估计仍然是统计中的一个热门与活跃的领域。在本文中我们将研究一类稳健的非参数估计:M估计。与其他类型的非参数估计量(如非参数最小二乘估计量)相比较,M估计量有以下的优点:它们对于异常点是稳健的,并且即使当观测值被污染或者残差是重尾分布时,它们仍然有很好的性质。 M估计是由Huber在1964年提出并用于位置参数的估计。M估计是一类稳健的估计。并且如Huber在1973所指出,当涉及到渐近理论时,M估计比其他的稳健估计(如L估计以及R估计)更容易处理。自从被提出以来,M估计的方法不论是在参数情形还是在非参数情形中都得到了深入的研究。不仅如此,一些学者还提出了改良化的M估计量。这些改良化的M估计量不仅继承了M估计量本身的优点,而且还具备了其他一些估计量的良好性质。例如,局部M估计量就是将局部线性光滑化方法与M估计的方法相结合后所产生的。因此,局部M估计量继承了局部多项式估计的优点并且克服了其非稳健性的缺点。我们将在第二章中研究相依空间过程的非参数回归函数及其导数的局部M估计。 过去对非参数M估计的研究大多针对于时间序列。对空间数据(或随机场)的稳健估计的研究相对比较少。然而在近几年中,越来越多的人开始关注空间数据的建模。这是因为空间数据在很多领域中都有广泛的应用,如经济学,流行病学,环境科学,图像分析以及海洋学等。因此在本文中,我们首先探讨一些相依空间数据的非参数M回归估计的渐近理论。在§2.1中,我们得到了相伴随机场非参数回归函数及其导数的局部M估计量的弱相合性以及渐近正态分布。在本节中,由于我们需要运用Bulinski引理来计算一些相伴随机场变量的非线性函数的协方差,所以我们对损失函数的导数ψ加了相对较强的限制条件。在§2.2中,我们建立了一个空间固定设计模型中回归函数及其导数的局部M估计量的弱相合性,强相合性以及渐近分布。该节中的空间过程满足一定的混合条件。由于§2.1以及之前一些文献中的损失函数ρ及其导数ψ都需要满足一些较为苛刻的条件,这使得一些重要的特殊例子都被排除在外。而我们在§2.2中所使用的方法则使得ρ与ψ的条件大为减弱。我们所考虑的ρ函数涵盖了此前的大部分作者所考虑的ρ。在§2.3中,我们建立了混合空间过程的非参数回归函数及其导数的局部M估计量的强Bahadur表示式。由此表示式,我们可以得到该局部M估计量的强相合性以及渐近正态分布。在§2.4中,我们用Monte-Carlo试验来说明第二章中所研究的局部M估计量的表现。由于我们一般不能通过定义局部M估计量的估计方程直接得到该估计量的明确表达式,所以我们采取了一个迭代的过程来推导该估计量。模拟结果显示,我们的估计方法在处理被污染或者重尾残差时的效果比NW(Nadaraya-Watson)估计量要好得多。 随着科学技术的发展,数据收集与测量的手段和方法也在不断进步,因此在实际应用中我们经常需要处理泛函型数据(如随机曲线)。泛函数据分析在很多领域,如犯罪学,经济学以及神经生理学,都有重要的应用。因此在最近几年中,越来越多的研究者开始关注泛函数据的建模与分析。在第三章中,我们将考虑混合泛函型数据的非参数回归函数的M估计。此章中我们所考虑的回归变量取值于某一抽象的半度量空间(例如R~d空间,Banach空间以及Hilbert空间),而响应变量则为实值随机变量。我们提出用非参数M估计的方法来对定义于抽象泛函空间的回归函数进行估计。我们建立了该M估计量的渐近相合性以及渐近分布。我们所要求的关于损失函数ρ及其导数ψ的条件在此类问题的研究是比较弱的,这使得我们的结果包括了一些重要的估计量,如最小绝对距离估计量,混合最小二乘与最小绝对距离估计量。另外我们还给出了两个满足第三章中混合条件的泛函序列的例子。最后,我们用Monte-Carlo模拟来说明我们的方法能很好地处理重尾残差。 在第四章中,我们考虑一个固定设计回归模型。在这个模型中,残差为一个长程相依的线性过程。我们用非参数M估计量来对模型中的回归函数进行估计,并得到了该M估计量的渐近一阶以及渐近二阶展开。我们将所得到的结果与NW估计量进行了比较,通过比较我们发现:非参数M估计量与NW估计量是渐近一阶等价的,这表明M估计量与NW估计量有相同的渐近分布。另外我们还证明了非参数M估计量与NW估计量之差在适当的标准化后存在着极限分布,这一极限分布与长程相依的参数α有关。我们通过一个模拟试验来比较非参数M估计量与NW估计量的有限样本性质。我们通过两个残差为长程相依线性过程的固定设计模型来比较这两个估计量的均方误差。此外,我们还画出了这两个估计量的轨迹。从模拟结果可以发现,与NW估计量相比较,非参数M估计量对污染数据是稳健的。 在本文第二至第四章中所涉及的随机样本都被假设为是平稳的。然而由于在计量经济以及金融中存在着很多的非平稳数据,例如价格以及汇率,所以在第五章中我们研究一类非平稳变量的非参数回归估计。单位根过程是一类在计量经济中有重要应用的非平稳过程,所以在此章中我们考虑共变量是单位根过程的一个非线性共积分模型。我们建立了该非线性共积分模型的回归函数的M估计量的弱相合性以及渐近分布。该渐近分布是混合正态的,并且不同于平稳时间序列的相关结果。从我们所得到的结果可以发现,第五章中所考虑的非平稳时间序列的非参数M估计量的收敛速度比平稳时间序列的收敛速度要慢,而这也正是我们所预期的,因为非平稳随机样本落在某一固定点的邻域中的观测值比平稳时间序列要少。在§5.3的模拟中,我们依然用迭代方法来推导非平稳数据的非参数回归函数的M估计量。我们分别给出了三个例子并进行了Monte-Carlo试验。通过比较非参数M估计量与对应的NW估计量的表现,我们可以看出:当残差被污染或者是重尾分布时,M估计量的稳健性比NW估计量要好得多。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 施锡铨;;关于Bootstrap的回顾[J];应用概率统计;1987年02期
2 丁彦恒,林群;阻尼波动方程有限元法的渐近展开和外推[J];高校应用数学学报A辑(中文版);1988年02期
3 涂冬生;均匀次序统计量的线性组合的渐近展开的非一致界限[J];数学学报;1988年06期
4 吴松林;严尚安;陶竹莲;李爱玲;;Pickands型推广估计量的渐近正态性[J];后勤工程学院学报;2006年01期
5 陈秀平;杜江;;Copula函数的加权平均距离检验方法[J];数理统计与管理;2011年04期
6 白志东,赵林城;独立随机变量之和的分布函数的渐近展开[J];中国科学A辑;1985年08期
7 余祥明;有界卷积型线性算子的渐近展开[J];数学学报;1985年05期
8 C.B.Corcino;Sheffer多项式的渐近展开(英文)[J];数学研究与评论;2001年04期
9 余祥明;一类正线性算子的渐近展开(续)[J];数学学报;1985年04期
10 毛泽春;非等距划分下样条函数的渐近展开[J];数学研究与评论;1990年04期
11 关力,江燕;一类三次Spline插值误差的渐近展开[J];东莞理工学院学报;2000年02期
12 白志东,赵林城;独立随机变量之和的分布函数的渐近展开[J];自然杂志;1985年02期
13 刘运康;三次样条函数的渐近展开和超收敛性[J];数学的实践与认识;1987年01期
14 郭文夷;任意端点条件下样条的渐近展开[J];计算数学;1992年02期
15 韩国强;第二类三次样条插值的渐近展开[J];计算数学;1986年02期
16 黄鸿慈,穆默,韩渭敏;矩形域低光滑解的渐近展开[J];计算数学;1986年02期
17 赵林城;线性模型中误差方差估计的分布的渐近展开[J];数学学报;1982年06期
18 余祥明;一类正线性算子的渐近展开[J];数学学报;1983年01期
19 郭文夷;样条函数带端点条件的渐近展开[J];上海第二工业大学学报;1986年01期
20 高坚;五次缺插值样条误差的逐项渐近展开[J];湘潭大学自然科学学报;1988年03期
中国重要会议论文全文数据库 前10条
1 武新乾;田铮;田萍;;一类部分线性自回归模型中的样条估计[A];中国现场统计研究会第12届学术年会论文集[C];2005年
2 王克协;罗朝盛;伍先运;董庆德;;可渗性地层钻孔中P波的共振与渐近展开分析[A];1990年中国地球物理学会第六届学术年会论文集[C];1990年
3 王海侠;周明儒;;一类向量奇摄动边值问题解的存在性[A];第七届全国非线性动力学学术会议和第九届全国非线性振动学术会议论文集[C];2004年
4 姚桂锦;王克协;马俊;杨宝俊;张海蓉;;声波测井中临界折射横波渐近展开方法和极点影响的研究[A];中国地球物理学会第二十届年会论文集[C];2004年
5 陈永强;徐鉴君;;雾化液粒凝固过程的数学模型及其渐近解[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年
6 闫长华;张忠占;;MAR下一类线性EV模型中回归系数的估计[A];中国现场统计研究会第12届学术年会论文集[C];2005年
7 李亚东;;结构可靠度的计算机分析与设计[A];中国土木工程学会桥梁及结构工程学会第九届年会论文集[C];1990年
8 金明仲;吴贤毅;金良琼;;Gauss-Markov条件下最小二乘估计的强相合性[A];贵州省自然科学优秀学术论文集[C];2005年
9 马湘玲;陈铁生;冯密罗;;简单随机抽样总体均值的置信区间[A];数学·物理·力学·高新技术研究进展——2000(8)卷——中国数学力学物理学高新技术交叉研究会第8届学术研讨会论文集[C];2000年
10 罗冬梅;周应龙;杨虹;吴莹;张华英;;陶瓷基复合材料的宏微观各向异性损伤分析[A];第十五届全国复合材料学术会议论文集(下册)[C];2008年
中国博士学位论文全文数据库 前10条
1 陈佳;计量经济模型中非参数M估计的渐近理论[D];浙江大学;2008年
2 张赛茵;Berkson测量误差模型的统计推断及其在可靠性分析中的应用[D];北京工业大学;2013年
3 蒋培;全轴随机振动环境的疲劳强化机理研究[D];国防科学技术大学;2003年
4 刘晓奇;多孔复合材料周期结构的多尺度模型与高精度算法[D];湖南师范大学;2006年
5 胡果荣;基于舍人数据的统计推断[D];吉林大学;2006年
6 刘继学;关于线性EV模型的研究[D];中国科学技术大学;2006年
7 谭常春;变点问题的统计推断及其在金融中的应用[D];中国科学技术大学;2007年
8 潘雄;半参数模型的估计理论及其应用[D];武汉大学;2005年
9 蒋达清;随机微分方程中的参数估计与假设检验问题[D];东北师范大学;2006年
10 胡锡健;股票量价渐近分布及其变点的统计过程控制监测[D];新疆大学;2008年
中国硕士学位论文全文数据库 前10条
1 韩七星;具随机扰动食物有限模型的参数估计及其渐近分布[D];东北师范大学;2006年
2 孟昭娟;分组数据下竞争风险混合模型的极大似然估计[D];大连理工大学;2009年
3 轩素梅;一类负极值指数Pickands型估计量和平滑正极值指数估计量的渐近性质[D];西南大学;2008年
4 王群山;广义线性模型中LS-SCAD估计的渐近性质[D];大连理工大学;2009年
5 王星惠;弱误差半参数和非参数回归模型估计的相合性[D];安徽大学;2011年
6 王全娥;Bernstein型算子列及其积分变形的完全渐近展开[D];首都师范大学;2007年
7 施生塔;ND、WOD样本下密度函数估计的相合性[D];桂林理工大学;2013年
8 李姣娜;位置不变的重尾指数估计[D];西南大学;2009年
9 魏亮瑜;平稳遍历函数型数据条件分位数的非参数估计[D];合肥工业大学;2012年
10 黄学维;密度核估计的广义相合性[D];湖北师范学院;2010年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978