收藏 | 手机打开

Optimal Power Flow

Ibrahim Oumarou  
【摘要】: Optimal power flow (OPF) is a fundamental tool in power system planning and operation. Prior to the restructuring of the industry, OPF was used in transmission planning, transmission-constrained economic dispatch, security re-dispatch, reactive power management, etc.. The objectives of this work is to used a simulation package and method suitable in solving the OPF problem, to give a succinct definition and function of the OPF, his objective, defined to be some quantifiable metric-typically some economic measure of system performance such as production costs or transmission losses or some system characteristic such as available transfer capability, so as his application in electrical system. The use of OPF is also outline. The general OPF problem formulation and the careful review of different optimization methods are presented. As OPF is a generic term that describes a broad class of problems in which we seek to optimize a specific objective function while satisfying constraints dictated by operational and physical particulars of electric system, the optimization methods review here include:linear programming (LP), nonlinear programming (NLP), quadratic programming (QP), Newton's base method, interior point methods, hybrid method and the artificial intelligence method. All the methods are presented with their advantages and disadvantages in solving an OPF problem. Considering all the proposed methods, an OPF problem is solved using the Newton's method which is well known in the area of power system and has been a standard solution algorithm for the power flow problem for decades. Meanwhile a computer programming package is required in order to solve the problem base on power flow and power loss analysis. PSS/E, power system simulation for engineering is used in the application of Newton's method to OPF. The objectives here are the losses minimization using IEEE 11-bus system. The control variable in this thesis is tap changing transformer. Shunt capacitors is also used for reactive power compensation. And at the end the combination of tap changing transformer and shunt capacitor is used. The simulation result is presented according to the Optimal power flow performance as compare to conventional load flow, the position and influence of tap changing, the shunt placement in the circuit in order to observe the best position for reactive power compensation in losses minimization which is the main objective of this thesis. It is to mention that the control of the tap ratio will normally not drastically reduce the system costs. In reality, tap ratio control allows control of the reactive power flow thus reducing losses. The combination of transformer taps and shunt capacitor gives us the best result for losses minimization. Finally the use of the OPF with other important electrical power system technique, such as optimal power flow incorporating facts devices and optimal power flow solution with transient stability constraints are presented.

中国期刊全文数据库 前19条
1 梁昔明;Modified Augmented Lagrange Multiplier Methods for Large-Scale Chemical Process Optimization[J];Chinese Journal of Chemical Engineering;2001年02期
3 Yang YANG;Yuchao TANG;;An Inertial Alternating Direction Method of Multipliers for Solving a Two-Block Separable Convex Minimization Problem[J];Journal of Mathematical Research with Applications;2021年02期
4 Pengcheng SONG;Zheng XU;Huanfeng DONG;Hui CAI;Zhenjian XIE;;Security-constrained line loss minimization in distribution systems with high penetration of renewable energy using UPFC[J];Journal of Modern Power Systems and Clean Energy;2017年06期
5 Jiangkai Peng;Bo Fan;Zhenghong Tu;Wei Zhang;Wenxin Liu;;Distributed Periodic Event-Triggered Optimal Control of DC Microgrids Based on Virtual Incremental Cost[J];IEEE/CAA Journal of Automatica Sinica;2022年04期
6 ;Reweighted minimization model for MR image reconstruction with split Bregman method[J];Science China(Information Sciences);2012年09期
7 Liping Wang;Aiwen Luo;;A joint matrix minimization approach for multi-image face recognition[J];Science China(Mathematics);2018年07期
8 张然;Wan Jianxiong;;Power cost minimization in data centers Via Lyapunov optimization[J];High Technology Letters;2016年04期
9 齐佩汉;郑仕链;杨小牛;赵知劲;;Cognitive radio adaptation for power consumption minimization using biogeography-based optimization[J];Chinese Physics B;2016年12期
10 张清宇;Multiple objectives application approach to waste minimization[J];Journal of Zhejiang University Science;2002年04期
11 黄宏新,曹泽星,刘述斌;Variance minimization for variational quantum Monte Carlo method[J];Progress in Natural Science;1997年05期
12 Zhenzhen SU;Hongbing JI;Yongquan ZHANG;;A Poisson multi-Bernoulli mixture filter with spawning based on Kullback–Leibler divergence minimization[J];Chinese Journal of Aeronautics;2021年11期
13 Nikhil Agrawal;Anil Kumar;Varun Bajaj;;A New Design Approach for Nearly Linear Phase Stable IIR Filter using Fractional Derivative[J];IEEE/CAA Journal of Automatica Sinica;2020年02期
14 ZHANG Peng;LIU Yang;LIU Cai;CUI Fangzi;YANG Xueting;PEI Sijia;;Seislet transform denoising based on total variation minimization[J];Global Geology;2015年01期
15 ;Variance minimization for continuous-time Markov decision processes: two approaches[J];Applied Mathematics:A Journal of Chinese Universities(Series B);2010年04期
16 Shuang CHEN;Li-ping PANG;Dan LI;Jin-he WANG;;An Inexact Modified Newton Method for Viscc and Application in Grasping Force[J];Acta Mathematicae Applicatae Sinica;2019年03期
17 ;Reaction path synthesis methodology for waste minimization[J];Science in China(Series B);2004年03期
18 CHEN WenGu;LI YaLing;;Stable recovery of low-rank matrix via nonconvex Schatten p-minimization[J];Science China(Mathematics);2015年12期
19 ;Comparative study on constructal optimizations of T-shaped fin based on entransy dissipation rate minimization and maximum thermal resistance minimization[J];Science China(Technological Sciences);2011年05期
中国重要会议论文全文数据库 前20条
1 ;Nearly-Optimal Control Algorithm for Nonlinear System with State and Input Delays[A];Proceedings of the 2011 Chinese Control and Decision Conference(CCDC)[C];2011年
2 Xungao Zhong;Zetao Yang;Chunxiao Miao;Guizhi Yang;Xiafu Peng;;Noises Adaptive Filtering Structure for Robotic Positioning Using Monocular Vision[A];第32届中国控制与决策会议论文集(3)[C];2020年
3 Chao Huang;Ruiyou Zhang;;Modeling and Optimization of a Drayage Problem with Foldable and Standard Containers[A];第32届中国控制与决策会议论文集(4)[C];2020年
4 Xiaoyong Liu;Yulan Wang;Nanqing Zhang;Qing Li;;Identification of Kernel Regression Model Using Double Norms Method[A];第三十九届中国控制会议论文集(1)[C];2020年
5 Zhidan Liu;Linfeng Gou;Ding Fan;Chujia Sun;;Establishment of Aero-Engine Improved On-Board Adaptive Model with Contracted Kalman Filter Estimation[A];第40届中国控制会议论文集(3)[C];2021年
6 ;Introduction to molecular mechanics and its studies of biomolecules[A];The 2nd Cross-Straits Symposium on Biology-Inspired Theoretical Problems--Proceedings of CCAST (World Laboratory) Workshop[C];2000年
7 Qingqing Ma;Ming Hao;Lihua Chen;;Homology Modeling of Rdlβ5 GABA receptor[A];第二届国际计算科学与工程国际学术研讨会论文集[C];2013年
8 ;Multiobjective Optimization Method for Solving Nonlinear Complementarity Problem[A];Proceedings of the 2011 Chinese Control and Decision Conference(CCDC)[C];2011年
9 Yunong Zhang;Zhiyuan Qi;Huihui Gong;Jian Li;Binbin Qiu;;About Step-Length of ZeaD(Zhang et al Discretization) Formula 4IgS_Y for Future Minimization via Fan Equations[A];第30届中国控制与决策会议论文集(1)[C];2018年
10 C.Martin;Y.Lu;Krauss-Maffei;;Two in One-Combining Mechanical and Thermal Solids/Liquids Separation Technology[A];第六届化学工程与生物技术展览暨会议参展商新产品和服务报告[C];2004年
11 Guo Xiwang;Liu Shixin;;Timed Petri Net Based Optimization Approach for Selective Disassembly Lot Sizing[A];第25届中国控制与决策会议论文集[C];2013年
12 ;Identification of Countercurrent Rare Earth Extraction Process based on State-space Model[A];Proceedings of 2010 Chinese Control and Decision Conference[C];2010年
13 Xiaomin Xie;Tingting Wang;Bo Liu;Kui Li;;A Clustering-Plane Based Energy Optimization Method for Image Segmentation[A];第30届中国控制与决策会议论文集(3)[C];2018年
14 XU Shiyun;YI Jun;MA Shicong;CHU Xiaojie;DONG Zichen;CHEN Zhanming;;A Free-Weighting Matrix Approach to Wide-area Coordinated Control among Multiple FACTS Devices[A];第36届中国控制会议论文集(G)[C];2017年
15 Yi-Xuan Long;Shen-Ping Xiao;Hui-Chao Lin;;Stability analysis of T-S fuzzy time-delay system based on quadratic function negative-determination method[A];第32届中国过程控制会议(CPCC2021)论文集[C];2021年
16 Qianyu Ye;Bo Yao;Quansheng Wu;Fuzhong Wang;;Reliable H∞ Control of Static Output Feedback against Sensor Failure[A];第32届中国控制与决策会议论文集(4)[C];2020年
17 Jiaqi Zhong;Yupeng Yuan;;Spatial-Differential Linear Matrix Inequality-based Distributed H_∞ Control for the Coupled Parabolic PDEs System[A];第三十九届中国控制会议论文集(2)[C];2020年
18 Xiaohui Qin;Yougang Bian;Zeyu Yang;Manjiang Hu;;Distributed Vehicular Platoon Control with Heterogeneous Communication Delays[A];第32届中国控制与决策会议论文集(1)[C];2020年
19 Wenxi Feng;Fei Luo;Xianyong Zhang;Wenyong Duan;;Further Stability Analysis for Load Frequency Control of Power Systems with Time-Varying Delays[A];第40届中国控制会议论文集(2)[C];2021年
20 Wangyan Li;Jie Bao;Guoliang Wei;;A New Fault Detection Method From Data-Based Dissipativity Theory[A];第40届中国控制会议论文集(8)[C];2021年
中国博士学位论文全文数据库 前10条
1 Ibrahim Oumarou;[D];浙江大学;2009年
2 Aslam Waseem;基于FACTS装置提高电力系统输送容量的方法研究[D];华北电力大学(北京);2019年
3 Khine Min Min Oo;[D];浙江师范大学;2019年
4 高磊;多FACTS阻尼控制交互作用及协调研究[D];山东大学;2014年
5 吴艳娟;FACTS在含大型风电场的电力系统稳定控制中的应用研究[D];天津大学;2013年
6 叶鹏;电力市场下基于FACTS的优化潮流控制研究[D];华北电力大学(河北);2004年
7 靳晓凌;基于FACTS装置的阻尼控制器设计及控制策略研究[D];山东大学;2007年
8 刘青;含FACTS元件线路保护若干问题的研究[D];华北电力大学(河北);2010年
9 钱峰;典型FACTS装置在电网中接入点、容量及类型选择方法研究[D];中国电力科学研究院;2009年
10 张琳;FACTS控制器间的交互影响分析及控制策略研究[D];浙江大学;2007年
中国硕士学位论文全文数据库 前20条
1 单博雅;电力系统中FACTS装置的优化配置研究[D];华中科技大学;2019年
2 胡炼;计及FACTS元件的戴维南动态等值与电压稳定性分析[D];湖南大学;2014年
3 吕棋鸿;FACTS设备对提高电网输电断面潮流极限的应用研究[D];福州大学;2017年
4 侯鹏飞;高压交流输电系统中多FACTS装置的优化配置研究[D];华北水利水电大学;2018年
5 尚慧玉;含有FACTS元件的交直流混合输电系统的小干扰稳定分析[D];中国电力科学研究院;2007年
6 张非;基于模糊控制和专家系统的多FACTS电压稳定协调控制[D];华北电力大学;2014年
7 孙沐夏;含FACTS设备电力系统的潮流计算方法研究[D];华南理工大学;2013年
8 张立志;含FACTS元件的互联电网输电能力研究[D];华北电力大学(北京);2007年
9 徐玉林;基于增益矩阵的FACTS交互影响和多目标智能优化配置研究[D];昆明理工大学;2021年
10 于晓军;FACTS装置对电网的长期可靠性影响的研究[D];华北电力大学(河北);2010年
11 李世群;风电场FACTS设备建模与交互影响研究[D];天津大学;2014年
12 郑蔚晨;多类型FACTS的定容选址研究[D];昆明理工大学;2016年
13 陈维;多FACTS装置协调控制改善系统潮流分布的研究[D];湖南大学;2013年
14 冯丽;市场环境下含FACTS装置的输电网规划[D];天津大学;2004年
15 常骁恺;电力市场背景下考虑FACTS的电压稳定约束最优潮流研究[D];广西大学;2014年
16 朱前龙;基于多目标改进教与学算法的多FACTS装置协调控制研究[D];湖南大学;2013年
17 袁翔;考虑FACTS影响的电力系统多目标交易计划研究[D];长沙理工大学;2008年
18 林凯骏;多类型FACTS在河南电网中的优化配置研究[D];北京交通大学;2015年
19 代泞磷;智能电网中FACTS元件全局协调优化的研究[D];华北电力大学;2012年
20 董力;基于可靠性成本/效益分析的FACTS元件优化配置模型研究[D];重庆大学;2011年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978