收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

多尺度分析方法在旋转机械状态监测中的应用研究

李鹏  
【摘要】:多尺度思想是人们在对世界认识的不断加深的过程中逐渐产生和发展的,与单尺度的观点相比,多尺度方法更贴近人们认识事物的习惯,也更加符合事物的本质。本论文立足多尺度分析方法在旋转机械状态监测与故障诊断中的应用,以多尺度分析方法为主要研究内容,深入研究了四种典型的多尺度方法在旋转机械状态监测中的原理、方法和效果,并最后将它们引入高速列车轴承轨边声学诊断系统的研究中。研究包括: 根据旋转机械状态信号包含有特征频率及高频谐振的特征,将小波方差的能量特性引入到旋转机械状态信号的频谱特征提取中,提出了旋转机械多尺度小波方差拟合特征的分析方法。即根据不同工作状态下旋转机械状态信号的“小波方差对数—尺度”最小二乘法拟合直线呈现出的与设备状态相关的特点,通过拟合直线斜率对状态信号进行分类。通过滚动轴承三状态振动测试和齿轮箱三状态测试两个独立实验对该方法进行了验证和分析,证明小波方差拟合特征作为一种新的信号多尺度分析参数,可以有效的反映旋转机械的不同故障和同一故障的不同故障阶段,同时计算简便,易于计算机实现实时监测。 针对状态监测中经常要遇到的设备状态突变现象,将信息熵理论与小波变换结合,研究了多尺度小波熵对设备状态信号突变的检测能力,提出基于小波熵的旋转机械状态监测方法。该方法通过特征频率的选择,消除低信噪比对信号整体熵的影响,利用小波熵对系统参数突变的敏感性,实现对设备故障的预警。齿轮箱全寿命实验表明小波时间熵和小波奇异熵可以有效的检测齿轮箱状态突变情况。 齿轮发生磨损时,轮对故障点周期性啮合时将会产生附加振动而激励齿轮共振,这种共振信号具有较强的尺度行为。根据该特征研究了标度分析在旋转机械状态监测中的应用。并以去趋势波动分析为基础,将去趋势波动分析中子区间概念细化到每一个采样点,通过权重函数调节计算不同尺度下的滑动平均和二阶中心距,可以得到每一个采样点的波动函数,发展了一种新的局域标度指数方法。该方法比去趋势波动分析更加重视信号局部的精细结构。齿轮箱磨损试验清晰的表明局域标度指数可以滤除其他频率成分,有效直观的检测出故障齿啮合时信号的微弱故障频率成分。 分析了单重分形刻画信号的特征时只能从整体上反映信号的不规则性,缺乏对局部奇异性刻画的缺点,研究了多重分形对旋转机械状态信号局部尺度行为的表征能力。并将去趋势多重分形方法引入到旋转机械状态监测中,并定义了多重分形谱的形态学特征,以此定量提取了信号的状态参数进行故障分类。齿轮箱磨损试验的去趋势多重分形分析证明了该方法具有良好的故障分类效果。 在高速铁路快速发展的背景下,分析了我国列车轴承轨边声学诊断系统的研究现状,设计制造了高速列车轴承的声学测试平台,并利用本文提出的多尺度分析方法,对多种工作状态下的高速列车轴承声学信号进行了深入的分析,进一步确认了多尺度方法在旋转机械故障诊断中的有效性,也给出了高速列车轴承声学诊断的一个可行的研究方向。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 黄勇,傅建中,陈子辰;基于热信息的机械状态监测技术[J];机电工程;1994年03期
2 汪法武;机械状态监测与船舶维修[J];中国科技信息;2005年12期
3 于淼;;浅谈旋转机械状态监测技术[J];黑龙江科技信息;2010年15期
4 华优基;;大型旋转机械状态监测浅析[J];通用机械;2012年04期
5 郭用坚;;旋转机械状态监测[J];自动化仪表;1989年11期
6 王金平;邓艾东;曹浩;;嵌入式旋转机械状态监测系统的设计与研究[J];汽轮机技术;2007年01期
7 张弘;;关于旋转机械状态监测及预测技术的发展研究[J];黑龙江科技信息;2009年15期
8 陈耀武,胡大海,严华,贺波,何如;多模式旋转机械状态监测系统[J];工程设计;1997年03期
9 冯秀;;“化工机械状态监测与故障诊断”课程建设探究[J];中国电力教育;2013年29期
10 赵华;振动监测方法在工程机械状态监测与故障诊断中的应用[J];工程机械与维修;2002年08期
11 彭合;;对旋转机械状态监测及预测技术的探讨[J];今日科苑;2007年16期
12 龚汉声;全国旋转机械状态监测和故障诊断技术对策会[J];发电设备;1988年02期
13 钱苏翔,朱利民,贾民平;旋转机械状态监测信号处理与数据管理系统的研制[J];机械设计与研究;2000年02期
14 张利群,朱利民,钟秉林;几个机械状态监测特征量的特性研究[J];振动与冲击;2001年01期
15 张春梅,王尚锦,张太镒,朱长新;时频分析在旋转机械状态监测及故障诊断中的应用[J];工程热物理学报;2002年02期
16 黄昭毅;;国际标准ISO18436-1(五)[J];中国设备工程;2007年04期
17 易新乾;工程机械状态监测与故障诊断技术[J];工程机械与维修;1997年03期
18 徐小力,梁福平,许宝杰,韩秋实,王为真;旋转机械状态监测及预测技术的发展与研究[J];建设机械技术与管理;2003年07期
19 常海城;贺尔碧格6310往复机械状态监测分析仪功能和实际应用[J];通用机械;2004年09期
20 丛培田;李兆华;韩辉;赵万春;;大型旋转机械状态监测及故障诊断系统[J];工具技术;2013年01期
中国重要会议论文全文数据库 前2条
1 何嘉武;樊新海;;基于振动烈度的机械状态监测方法及应用[A];2010振动与噪声测试峰会论文集[C];2010年
2 华皛;张庆;罗爱玲;徐光华;;基于PDA的旋转机械状态监测与故障诊断系统[A];2008年全国振动工程及应用学术会议暨第十一届全国设备故障诊断学术会议论文集[C];2008年
中国博士学位论文全文数据库 前1条
1 李鹏;多尺度分析方法在旋转机械状态监测中的应用研究[D];中国科学技术大学;2012年
中国硕士学位论文全文数据库 前9条
1 周李良;便携式旋转机械状态监测系统的设计[D];成都理工大学;2009年
2 雷凯;旋转机械状态监测系统[D];电子科技大学;2005年
3 王艳;旋转机械状态监测与故障诊断系统的开发[D];昆明理工大学;2007年
4 王金平;嵌入式旋转机械状态监测系统的设计与研究[D];东南大学;2007年
5 孙长飞;旋转机械状态监测与故障诊断系统的开发[D];西安建筑科技大学;2005年
6 刘颖峰;旋转机械状态监测系统的研究与开发[D];浙江大学;2003年
7 曹浩;基于以太网分布式旋转机械状态监测系统研制[D];东南大学;2006年
8 钱媛媛;基于LabVIEW的机械状态监测系统研制[D];东南大学;2006年
9 狄金海;基于以太网分布式旋转机械状态监测系统的研制[D];东南大学;2006年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978