收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

MIMO雷达稀疏成像的失配问题研究

丁丽  
【摘要】:MIMO(Multiple input Multiple output,MIMO)雷达是指利用多个发射和接收天线同时对目标进行观测的一种新构型的雷达系统。阵列构型设计和波形分集技术使MIMO雷达能够获得远多于实际物理阵元数目的观测通道和空间自由度。通过对观测通道回波的联合处理,相比于传统成像雷达,MIMO雷达在成像的方位向分辨率、实时性和运动补偿等方面有明显的性能优势。进一步的,为克服信号带宽和系统采样频率在实现高分辨率成像时对雷达系统设计和实现的困难和限制,基于压缩感知(Compressed Sensing, CS)的MIMO雷达稀疏成像开始受到广泛的关注,是当前的一个研究热点。由CS理论可知,MIMO雷达的稀疏重构(即,反演)性能依赖于观测矩阵的性质,因此一个精确已知的观测矩阵是获得好的反演结果的前提条件。众所周知,MIMO雷达的观测矩阵由雷达系统参数和成像场景的网格点共同决定,如果其中任一的一个因素存在不确定性都将导致实际观测矩阵不再与默认的观测矩阵一致,这种观测矩阵的失配必然对成像算法的有效性、可靠性和稳健性提出了挑战。因此,研究观测矩阵失配对MIMO雷达稀疏成像的影响是有实际应用意义的。 本文采用正交匹配追踪算法(Orthogonal Matching Pursuit,OMP)作为反演算法的比较基准,围绕系统参数和成像场景网格点这两类因素的不确定性,重点研究和分析观测矩阵失配的产生机理、OMP算法在实现有效反演时对这些不确定性的承受能力、以及高效重构算法等问题,主要的研究内容如下: 1、针对相位分集和频率分集两种波形分集方式,建立了对应紧凑式MIMO雷达系统的回波模型,分别从点扩散函数和空间谱的角度推导了成像分辨率和无模糊距离的解析表达式,重点分析了两种角度下对成像分辨率描述的差异。详细介绍了OMP算法的算法流程和基于互相关系数的重构性能推导过程。同时,根据互相关系数和点扩散函数之间的紧密联系,确定了通过点扩散函数来分析观测矩阵失配和稀疏反演性能的可行性。 2、对于系统可能存在的发射-接收通道随机相位误差,基于其在回波相位中不与散射点坐标信息耦合的先验假设,在MIMO雷达系统中建立了含有相位不确定性的回波模型,分析了这一类随机相位误差对观测矩阵的作用形式,表现为一左乘对角扰动矩阵。进一步的,利用受扰动的点扩散函数和相位误差的随机特性,分析了左乘扰动矩阵对OMP算法成像的影响,主要表现为幅度衰减且衰减程度由相位的波动范围决定。特别地,根据推导的OMP算法重构性能,分别在支撑集恢复和幅值估计两方面推导了OMP算法对相位误差的容限。考虑到回波中随机相位误差是一隐含变量的事实,引入期望最大化(Expectation Maximization, EM)方法,根据最大后验概率准则,提出了期望最大化的稀疏成像算法(Sparse Imaging via EM, SIEM),仿真结果显示在存在相位误差时SIEM比OMP具有更稳定的反演性能。 3、对于系统可能存在的发射一接收通道载频偏差,在相位分集MIMO雷达系统中建立了含有发射、接收载频不确定性的解析回波模型,回波表达式表明载频偏差不仅在回波相位中与散射点位置信息强耦合,而且会影响通道分离的性能,导致通道分离残差的出现。相比随机相位误差,载频偏差引起更加复杂、严重的观测矩阵失配。根据受扰动点扩散函数的峰值变化,分析得到了载频偏差对OMP算法成像的影响集中表现为对点扩散函数峰值的衰减,然后进一步推导了存在载频偏差时OMP算法的反演性能变化以及OMP算法支撑集恢复和幅值估计对载频偏差的容限。通过将载频偏差引起的观测矩阵失配表示为一个具有有界Frobenius范数约束的加性扰动矩阵,提出了基于有界扰动的稀疏成像算法(Sparse Imaging based on Frobenius-nrom-bounded Perturbation, SIFrobP)。根据有界扰动的一般性假设,SIFrobP算法的适用范围广泛,可适用于实际观测矩阵中存在任意未知不确定性的场景。 4、研究了连续成像场景的离散化网格与真实目标散射点之间存在不确定性时的网格失配问题。从细化网格提高散射点位置估计精度的角度,将基于Band-exclusion技术的改进型OMP算法(Band-excluded OMP,BOMP)引入MIMO雷达稀疏成像,利用点扩散函数指导相关带门限值的设置使BOMP算法成像的低分辨率得到了有效地改善。同时,从摒弃对连续成像场景网格化的角度出发,提出了基于连续参数估计的MIMO雷达稀疏成像方法(Sparse Imaging via Continuous Parameter Estimate,SICPE),推导了算法的性能条件。该算法不仅避免了经典稀疏重构算法对网格的依赖性,而且可以在发射/接收端稀疏布阵或非均匀采样时均获得较好的稀疏成像结果。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 刘叙含;申晓红;姚海洋;邓欣;;基于帐篷混沌观测矩阵的图像压缩感知[J];传感器与微系统;2014年09期
2 王韦刚;杨震;顾彬;胡海峰;;基于观测矩阵优化的自适应压缩频谱感知[J];通信学报;2014年08期
3 王侠;王开;王青云;梁瑞宇;左加阔;赵力;邹采荣;;压缩感知中的确定性随机观测矩阵构造[J];信号处理;2014年04期
4 鄢鹏程;;一种基于阈值迭代和自适应观测矩阵的压缩感知图像处理[J];信息与电脑(理论版);2013年03期
5 石光明;刘丹华;高大化;刘哲;林杰;王良君;;压缩感知理论及其研究进展[J];电子学报;2009年05期
6 宁万正;王海燕;申晓红;蒋世全;王璇;;一种自适应观测矩阵下的信号重构算法[J];计算机应用研究;2011年09期
7 赵春晖;刘巍;;压缩感知理论及其在成像技术中的应用[J];智能系统学报;2012年01期
8 金坚;谷源涛;梅顺良;;压缩采样技术及其应用[J];电子与信息学报;2010年02期
9 王军华;黄知涛;周一宇;王丰华;;压缩感知理论中的广义不相关性准则[J];信号处理;2012年05期
10 肖小潮;郑宝玉;王臣昊;;一种基于最优观测矩阵的自适应贝叶斯压缩信道感知联合机制[J];电子与信息学报;2012年10期
11 卢雁;吴盛教;赵文强;;压缩感知理论综述[J];计算机与数字工程;2012年08期
12 李熔;;基于截尾估计的概率估计方法[J];计算机技术与发展;2014年02期
13 ;[J];;年期
14 ;[J];;年期
15 ;[J];;年期
16 ;[J];;年期
17 ;[J];;年期
18 ;[J];;年期
19 ;[J];;年期
20 ;[J];;年期
中国重要会议论文全文数据库 前1条
1 顾国生;战荫伟;;一种混沌序列在压缩感知观测矩阵构造中的应用[A];第十五届全国图象图形学学术会议论文集[C];2010年
中国博士学位论文全文数据库 前4条
1 孙晶明;压缩感知中观测矩阵的研究[D];华中科技大学;2013年
2 徐永刚;矿山数据压缩采集与重建方法研究[D];中国矿业大学;2013年
3 丁丽;MIMO雷达稀疏成像的失配问题研究[D];中国科学技术大学;2014年
4 张京超;稀疏多频带信号压缩采样方法研究[D];哈尔滨工业大学;2014年
中国硕士学位论文全文数据库 前4条
1 孙瑞;压缩传感中观测矩阵构造及其性能分析[D];哈尔滨工业大学;2012年
2 王彪;压缩传感中的观测矩阵研究[D];天津理工大学;2012年
3 田彩丽;压缩感知中量化问题的研究[D];西北农林科技大学;2014年
4 朱晨辰;基于压缩感知的阵列DOA估计[D];西安电子科技大学;2014年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978