结构高频声振统计特性及能量辐射传递模型研究
【摘要】:各向异性复合材料结构具有良好的耐腐蚀性、高比强度及高比刚度等优良特性已被广泛应用于航空航天、交通运输等重要工程领域,如大型客机蒙皮、高速飞行器热防护和高铁车身壁板等。这些结构在服役过程中,常须承受由于湍流边界层引起的高频脉动激励的作用。近年来,由此产生的高频声振耦合问题也引起了相关学者的广泛关注。由于有限元和边界元法等确定性分析方法在求解复杂组合结构的声振耦合问题时有频率上限的问题,往往不适合高频声振耦合分析。为此,相关学者提出了以统计平均的能量作为分析变量的方法,如统计能量分析(SEA),振动传导法(VCA)和能量辐射传递法(RETM)等。其中,RETM由热辐射传递比拟而来,属于几何声学的范畴,能够较好的估计三个维度的能量响应分布及功率流场。但目前RETM仅适用于均匀各向同性介质,限制了其在复合材料振动相关领域的应用,而且在实际工程中,能量变量往往不能直接应用。为此本文从RETM的基本理论出发,针对复合材料结构的高频声振耦合问题以及能量与应力/应变之间的转换关系开展研究,主要内容包括:(1)高频声振耦合系统统计性分析方法理论框架的梳理。首先回顾了 SEA的基本理论,明确相关参数的物理意义;然后研究了梁、板和声腔的高频能量在阻尼-频率平面内的振动能量场的统计特性,包括对三种振动场(模态场、扩散场以及自由场)的解;最后,利用SEA与传递矩阵法(TMM)介绍了层状多孔吸声介质在被动隔振方面的应用。(2)基于RETM的复合材料梁高频振动分析方法研究。以复合材料层合梁为研究对象,首先基于铁木辛柯梁(Timoshenko beam)模型,推导了层合梁的频散关系、波群速度、点导纳、模态密度、输入功率等参量,建立了一维结构多波传播系统的RETM模型;然后,将该模型与欧拉-伯努利梁(Euler-Bernoulli beam)的RETM模型相关计算结果进行比较,得出在横向振动场由弯曲占主导的频段两模型几乎没差别,但在剪切和弯曲共同主导的较高频段差别显著;最后,还将RETM结果与波传法(WPA)的理论解进行对比,验证本文所建立模型的正确性。(3)基于RETM的各向异性二维介质高频振动分析方法研究。首先,利用费马定理(Fermat's principle)证明了能量射线在均匀二维各向异性介质中沿直线传播,并理论证明了在耦合各向异性介质的耦合边界处费马定理与斯涅尔定律(Snell's law)的等价性;然后,首次推导了各向异性二维介质中点源的辐射功率流强度函数的显示表达式;最后,将RETM用于估计正交各向异性薄膜、汽车轮胎和各向异性薄板等结构的高频振动响应,并将预示结果与模态叠加理论解或者有限元(FEM)解进行对比,验证了 RETM模型在二维各向异性介质高频振动能量分布和能量流场预示中的有效性。(4)基于RETM的高频振动应力/应变积分表达式的建立。本文首次通过RETM来估计结构稳态高频振动应力/应变。首先,通过理论证明了梁和薄板在高频振动时,其动能密度等于势能密度;再根据弹性理论中弹性势能的表达式建立能量密度与应力/应变之间的转换关系;然后,根据RETM理论,计算点的应力/应变均方值由经过该点的能量射线携带的能量所转换的应力/应变均方值叠加而来,由此构造了应力/应变均方值的积分表达式;最后,通过若干算验证了表达式的正确性。