收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

固体氧化物燃料电池的性能优化

姜彩荣  
【摘要】: 固体氧化物燃料电池(SOFCs)作为一种举世公认的绿色能源,得到了世界范围内的广泛关注和大力研发,进展十分快速。但在走向实用化进程中,还有若干问题没有解决。其中一个令人困扰的问题是,尽管SOFCs与其他类型的燃料电池相比,具有燃料适应性强的特点,廉价易得的碳氢化合物燃料不会产生如质子交换膜燃料电池(PEMFC)那样的CO中毒问题,但SOFCs通常使用的镍基阳极对碳氢化合物的催化活性过高,因而容易产生电极积碳使电池性能退化,这个问题虽经长期研究但一直没得到很好的解决。另一方面,SOFCs技术首先市场化的方向是小型化、便携式的分散电源,首选的是液体燃料,醇类当然最为令人中意,但上述积碳问题甚至比目前广泛研究的天然气燃料还要严重。 本实验室打破常规的思维,将被人们忽视的工业液氨用作SOFCs的燃料,研究结果表明具有可行性,但电池的性能水平还比较低。本论文就是在此基础上,以发展中低温SOFCs为目标,主要对YSZ和Sm掺杂的氧化铈(SDC)为电解质的SOFCs在制备技术和性能上进行优化,以便获得更高水平的电池功率输出。工作侧重于氨燃料在YSZ和SDC电解质基SOFCs中的应用研究,通过优化的电池材料和电池结构来提高电池性能。此外,氨燃料在新近发展的质子导体电解质SOFCs中的应用也进行了初步探索。 本论文第一和第二章简要介绍了SOFCs的基本原理,论文所涉及到的电池材料,主要是电解质材料和阴极材料的基本性能。综述了SDC电解质粉体及薄膜制备的各种工艺和方法,并对SDC电解质基SOFCs性能研究的现状及存在的问题进行了总结,分析了SOFCs的发展趋势。以提高SOFCs功率输出为主线,提出本论文的研究目标及内容。 从目前的研究现状来看,YSZ电解质的稳定性高、机械强度好,但其局限性就是中低温下电导率低。中低温下研究较多的就是具有高离子电导率的掺杂氧化铈类电解质,但掺杂氧化铈类材料的致密化温度一般很高(>1500℃左右)。本论文利用实验室发展的聚乙烯醇(PVA)辅助的燃烧合成方法获得的高活性的Ce_(0.8)Sm_(0.2)O_(2-δ)(SDC)电解质粉体,采用干压法这一简单、便捷、膜厚易于控制的工艺获得阳极支撑型、10μm厚度的SDC电解质薄膜,将SDC电解质膜的致密化烧结温度有效地降低到1250℃。以常用Sm_(0.5)Sr_(0.5)CoO_(3-δ)为阴极,在以3mol%H_2O+H_2为燃料的条件下获得了较好的电池性能。在650,600和550℃的温度下,电池的开路电压分别为0.803,0.844,0.87V,最大功率密度分别为936,470和189mW cm~(-2)。SDC电解质基燃料电池的性能优化的另一个考虑就是电池阴极材料的选择。新近发展的阴极材料Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)(BSCF),在掺杂氧化铈基燃料电池中具有很好的相容性和高的活性已得到证实。为进一步提高电池的性能,本论文同样利用干压共烧工艺获得了10μm的SDC电解质膜。研究表明,采用BSCF作为阴极组装的电池获得了极高的功率输出。在650℃时,3mol%H_2O+H_2为燃料最大功率密度达到1872mW cm~(-2),这是迄今所知国际文献的最高报道值。更低的温度也显示了很好的电池性能,600和550℃的最大功率分别为1357,748mW cm~(-2)。电池的优越性能归因于薄的电解质膜和高催化性阴极的使用。但电池的开路电压却比预料的低,650,600和550℃的开路电压只有0.747,0.787,0.816V。通过SDC电解质基SOFCs开路电压的理论推导,并结合实验结果,开路电压偏低的主要原因可能是本论文中获得的薄的电解质膜及高的阳极室氧分压。 SOFCs的燃料适应性强使得开发其他可替代氢的燃料成为研究热点之一。最近氨的开发利用呈现很好的前景。本实验室在氨燃料电池性能上进行了初步的探索,尝试了将氨燃料应用在氧离子导电的YSZ和SDC电解质基SOFCs上,从理论和实验两方面证实了氧离子导体基氨燃料电池无NO等毒性气体的产生,然而,电池性能输出并不理想,以YSZ为电解质时,750℃下电池最大功率密度只有299mW cm~(-2),同样SDC电解质基氨燃料电池性能也不高,700℃下电池最大功率密度只有253mW cm~(-2),这可能主要由于厚的电解质膜(约50μm),不完善的电池微结构及低的阴极催化活性有关。本论文中以优化的电池结构研究了氨燃料SOFCs的性能。以YSZ为电解质的氨燃料SOFCs的性能研究表明,采用优化的电池结构获得了高的电池性能。在中温(800℃和750℃)下操作,氨和氢燃料SOFCs性能没有明显的差异:在800℃时氢和氨为燃料的SOFCs的功率分别为1206,1137mW cm~(-2),而750℃时分别为645,637mW cm~(-2);低温(700℃)下氨燃料的电池性能要比氢燃料的电池性能要逊色。以SDC为电解质的氨燃料SOFCs的性能研究表明,虽然在测试温度范围内,氨为燃料的电池性能比氢为燃料的电池性能要低,并呈现出温度越低性能越差的趋势,但以氨为燃料仍可以获得理想的电池功率输出,650℃时的最大功率密度为1190mW cm~(-2),这也是目前以氨为燃料的电池最好的功率输出数据。详细对比了以氨和氢为燃料的SOFCs性能差异。业已查明,导致氨燃料电池性能差的主要原因可能是随着温度的降低,氨的分解反应要吸收热量,因此氨的分解率降低。通过对氢气和氨气下电池阻抗谱的检测分析得知,在采用氨作燃料时,电池的阻抗损失相对于用氢气燃料时要大,这也可能是以氨为燃料的SOFCs性能比以氢为燃料的SOFCs性能逊色的原因之一。氨作为燃料时,电池的电化学反应机理还有待于进一步研究。 最近的研究表明质子导体在中低温下具有高的电导率,在SOFCs中有好的应用前景。在所有质子导体中,BaCeO_3电导率最高,因此倍受重视。本实验室在质子导体电解质的开发应用中已经开展了部分的研究工作,但仍有大量的相关工作还未进行。本论文的一部分工作就是以降低BaCeO_3基质子导体烧结温度为目的,研究BaCeO_3基质子导体电解质SOFCs的性能,并尝试使用氨燃料在BaCeO_3基SOFCs中的表现。首先采用燃烧合成工艺,并利用Zn离子的稳定剂和助烧结剂的作用,实现了BaCeO_3基材料的低温合成和烧结。不同温度粉体的XRD测试表明,粉体在700℃已经形成钙钛矿相主相,800℃煅烧的粉体只有极少量的BaCO_3杂相。在1000℃的处理温度下,可以得到纯相的BaCe_(0.5)Zr_(0.3)Y_(0.16)Zn_(0.04)O_(3-δ)(BCZYZ)粉体。对烧结体的表面成分分析表面,粉体中的不纯物将会在烧结过程中导致烧结体的相组成偏析。利用1000℃合成的BCZYZ粉体,在1250℃可获得完全致密的烧结体。其次,利用干压-共烧工艺,制备了不同厚度的BCZYZ的薄膜,以Ni-BCZYZ为阳极和La_(0.6)Sr_(0.4)CoO_(3-δ)为阴极组装的电池当以氢为燃料时,表现出了优良的电池性能。以厚度为14μm的BCZYZ为电解质的单电池产生了较高的功率输出。在700,650,600℃的最大功率密度分别为413mW/cm~2、242mW/cm~2和118mW/cm~2,相应地开路电压为0.935,0.993,1.008 V。降低膜厚到10μm,电池的功率输出大幅度提高,700℃时的最大功率密度达到了591mW cm~(-2),这是目前报道的质子导体电解质基SOFCs性能最好的。最后,初步探索了将氨燃料应用在所合成的材料组成的单电池上,在650和600℃下获得的最大功率分别为123,82mW cm~(-2)。氨燃料电池性能的输出不是很理想,还有待于进一步改进和提高。 本论文通过对YSZ和SDC电解质基SOFCs的材料和结构的优化,实现了氨燃料在氧离子导体电解质基燃料电池中的应用,得到了极高的电池性能,达到了实用化和商品化的需求。利用优化的阴极材料,质子导体电解质基燃料电池也产生了优越的功率输出。氨燃料在质子导体燃料电池中的研究还有待于进一步改进。论文中对BCZYZ电解质基SOFCs的长期稳定性还没有涉及,应进一步研究。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 ;燃料电池新技术扫描[J];技术与市场;2011年07期
2 徐旭东;田长安;尹奇异;程继海;;固体氧化物燃料电池电解质材料的发展趋势[J];硅酸盐通报;2011年03期
3 程宏辉;王昌龙;曹磊;陈飞;潘金平;王蔚国;;固体氧化物燃料电池气密性检测装置的设计[J];制造业自动化;2011年14期
4 王传岭;白耀辉;丁姣;刘江;;浸渍法制备阳极支撑管式固体氧化物燃料电池[J];电源技术;2011年07期
5 张健;张丽;朱建新;;固体氧化物燃料电池材料的研究进展[J];现代教育科学;2010年S1期
6 王涵多;刘江;丁姣;;挤出成型法制备阳极支撑型固体氧化物燃料电池[J];硅酸盐学报;2011年07期
7 张潇元;段立强;;CO_2零排放的SOFC复合动力系统分析[J];现代电力;2011年04期
8 刘红芹;刘巍;李彬;欧刚;潘伟;;LSCF-La_(10)Si_6O_(27)复合阴极的制备与表征[J];稀有金属材料与工程;2011年S1期
9 王桂兰;熊凡;芮道满;张海鸥;;固/液相等离子喷涂制备固体氧化物燃料电池复合电极[J];材料工程;2011年07期
10 黄河;;新产品[J];太阳能;2011年05期
11 于建国;王玉璋;翁史烈;;进气温度对Ni-YSZ阳极支撑型平板式SOFC工作特性的影响[J];硅酸盐学报;2011年07期
12 苏蕙;吴也凡;罗凌虹;程亮;石纪军;;以(Cu–Ce–Zr–O)–ScSZ为阳极的固体氧化物燃料电池的制备及性能[J];硅酸盐学报;2011年08期
13 罗凌虹;侯冰雪;吴也凡;王程程;程亮;石纪军;廖花妹;;石墨含量对流延制备IT-SOFC电化学性能的影响[J];稀有金属材料与工程;2011年S1期
14 李喜宝;王红星;;操作条件对平板式SOFC性能的影响[J];功能材料;2011年S4期
15 韩敏芳;杜俊平;;氧化镁复合Bi_2O_3-BaO-SiO_2-R_xO_y玻璃封接材料性能[J];硅酸盐学报;2011年07期
16 谭玲君;杨晨;;固体氧化物燃料电池与质子交换膜燃料电池联合系统的建模与仿真[J];中国电机工程学报;2011年20期
17 聂俊杰;;燃料电池在航空领域的应用与发展[J];国际航空;2010年08期
18 郭为民;裴俊彦;梁红瑜;刘江;;SDC中间层的阳极支撑型LSGM电解质膜SOFC的制备及性能研究[J];无机材料学报;2011年07期
19 沈哲敏;孙克宁;严琰;周晓亮;张乃庆;;平板式固体氧化物燃料电池Ag-CuO封接材料的研究[J];功能材料;2011年08期
20 王军;姜晓丽;李维华;张敏;张瑞祥;郝先库;;大颗粒LSM的制备及表征[J];稀土;2011年03期
中国重要会议论文全文数据库 前10条
1 查少武;高建峰;陈西林;彭定坤;孟广耀;;镓酸镧基固体电解质的凝胶浇注法制备及其电化学性能研究[A];2000年材料科学与工程新进展(上)——2000年中国材料研讨会论文集[C];2000年
2 李俊;王远洋;;Ni负载量对Ni-YSZ上氢氧电化学性能影响规律的MC模拟[A];第七届全国催化剂制备科学与技术研讨会论文集[C];2009年
3 韩敏芳;王玉倩;王琦;彭苏萍;;玻璃陶瓷用作固体氧化物燃料电池封接材料[A];2005中国储能电池与动力电池及其关键材料学术研讨会论文集[C];2005年
4 韩敏芳;尹会燕;唐秀玲;彭苏萍;;固体氧化物燃料电池发展及展望[A];特种陶瓷及金属封接技术基础和应用研讨会论文集[C];2005年
5 张乃庆;孙毅兵;孙克宁;贾德昌;周德瑞;;流延法制备La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3-δ)电解质薄膜[A];2006年全国功能材料学术年会专辑[C];2006年
6 贾莉;吕喆;陈孔发;沙雪清;李国卿;苏文辉;;预烧后的YSZ粉体对Ni/YSZ阳极性能的影响[A];第十二届中国固态离子学学术会议论文集稀土专辑[C];2004年
7 刘江;Scott A Barnett;;直接碳氢化合物固体氧化物燃料电池阳极研究进展[A];第十二届中国固态离子学学术会议论文集稀土专辑[C];2004年
8 韩吉田;于泽庭;;基于固体氧化物燃料电池的分布式冷热电联供总能系统[A];全国暖通空调制冷2008年学术年会资料集[C];2008年
9 马文会;戴永年;杨斌;王华;谢刚;;固体氧化物燃料电池零排放系统新思路[A];2005中国储能电池与动力电池及其关键材料学术研讨会论文集[C];2005年
10 乔金硕;孙克宁;张乃庆;周德瑞;;固体氧化物燃料电池直接氧化阳极研究进展[A];2006年全国功能材料学术年会专辑[C];2006年
中国博士学位论文全文数据库 前10条
1 姜彩荣;固体氧化物燃料电池的性能优化[D];中国科学技术大学;2007年
2 毕忠合;阳极负载新型复合电解质中温固体氧化物燃料电池的研制及其性能研究[D];中国科学院研究生院(大连化学物理研究所);2005年
3 王振卫;ScSZ电解质及其在IT-SOFCs中的应用[D];中国科学院研究生院(大连化学物理研究所);2005年
4 汤根土;平板状阳极支撑固体氧化物燃料电池的实验与数值模拟[D];浙江大学;2005年
5 贾俊曦;固体氧化物燃料电池传热传质模型研究[D];大连理工大学;2006年
6 辛显双;固体氧化物燃料电池的电解质纳米粉和薄膜制备方法研究[D];哈尔滨工业大学;2006年
7 王毓娟;SOFC阳极甲烷直接氧化电催化剂的研究[D];华南理工大学;2001年
8 贾莉;低成本制备氧化锆薄膜燃料电池的研究[D];大连理工大学;2006年
9 马建军;中温固体氧化物燃料电池的制备与表征[D];中国科学技术大学;2007年
10 沙雪清;双掺杂CeO_2和LaGaO_3电解质的制备及性能研究[D];哈尔滨工业大学;2007年
中国硕士学位论文全文数据库 前10条
1 张继东;新型复合阴极和薄膜电解质对氧化铈基电解质中温固体氧化物燃料电池性能的改善[D];吉林大学;2005年
2 杨硕;湿化学法合成固体氧化物燃料电池阴极材料的结构与性能[D];吉林大学;2006年
3 刘杰;不同阳极支撑体上钐掺杂氧化铈电解质膜的制备与性能[D];吉林大学;2005年
4 高鸿波;用于固体氧化物燃料电池的铁掺杂YSZ复合电解质与电极的制备及性能研究[D];吉林大学;2005年
5 吴努斌;固体氧化物燃料电池平板和圆筒单体电势场数值模拟[D];华北电力大学(北京);2006年
6 高阳;中温固体氧化物燃料电池阴极材料的制备及性能研究[D];吉林大学;2006年
7 郑敏章;固体氧化物燃料电池阴极材料La_(1-x)Sr_xCuO_(3-δ)的制备及性能研究[D];吉林大学;2005年
8 侯志芳;固体氧化物燃料电池LSM-LSC复合阴极的制备与研究[D];大连交通大学;2005年
9 张代生;固体氧化物燃料电池阳极材料Ni-SDC和Ni-GDC的制备及性能研究[D];吉林大学;2006年
10 张军;固体氧化物燃料电池CuCoNi/SDC阳极的制备及表征[D];内蒙古科技大学;2007年
中国重要报纸全文数据库 前10条
1 查少武 杨蔚光 夏长荣 孟广耀;21世纪的绿色能源——固体氧化物燃料电池[N];科技日报;2000年
2 郝晓刚 孙彦平;燃料电池——21世纪的清洁发电技术[N];山西经济日报;2001年
3 太原理工大学洁净化工研究所 郝晓刚 孙彦平;燃料电池 21世纪的清洁发电技术[N];山西经济日报;2002年
4 祝同华 秦伟;我国燃料电池研究驶入发展快车道[N];中国电子报;2003年
5 本报记者 岳琳;直接运用最新技术是捷径[N];中国汽车报;2002年
6 钟希;稀土催化材料的应用进展(二)[N];中国有色金属报;2004年
7 张曙光 洪锋;化学反应能量直接变换电能[N];中国矿业报;2002年
8 ;可用拖拉机拖走的燃料电池电站[N];大众科技报;2000年
9 ;燃料电池: 百万次“充电”不是梦[N];中国计算机报;2003年
10 王秀兰;我国中温固体燃料电池走向实用化[N];中国化工报;2003年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978