收藏本站
收藏 | 论文排版

贝叶斯网络结构学习及其应用研究

胡春玲  
【摘要】:现实世界中存在着大量的不确定性现象,建立有效的模型是对不确定性问题正确决策的关键。针对问题领域中变量之间的不确定性关系,贝叶斯网络提供了一种紧凑、直观且有效的图形表达方式。建立高效稳定的贝叶斯网络学习算法是贝叶斯网络走向应用的关键所在,多年来,贝叶斯网络学习及其应用一直是国内外研究的热门课题。本文在对贝叶斯网络的国内外研究现状进行全面分析的基础上,针对结构学习目前所面临的收敛速度慢和可能收敛于局部最优两大主要问题,对数据完备和数据缺失两种情况下的贝叶斯网络结构学习进行了研究,并进一步地对贝叶斯网络在灵敏度分析和频繁模式挖掘中的应用进行了研究。全文主要内容如下: 1.贝叶斯网络的结构学习研究 ①数据完备情况下贝叶斯网络的结构学习:研究发现MCMC方法抽样过程产生的马尔可夫链具有各态遍历性,并能保证最终收敛于平稳分布,因而具有良好的精度。 MHS是最常用的MCMC方法之一,但MHS算法抽样过程的融合性差,收敛速度较慢。本文从初始值、建议分布和对网络子结构的抽样三个方面对MHS抽样算法进行改进,提出了一种贝叶斯网络结构学习算法PCMHS,该算法同时进行多个MHS抽样,构建多条并行的收敛于Boltzmann分布的马尔可夫链。算法PCMHS首先基于节点之间的互信息,进行所有马尔可夫链的初始化,在其迭代过程中,算法PCMHS基于并行的上一代抽样的样本总体得到产生下一代个体的建议分布,并通过同时对网络中弧和子结构的抽样产生下一代个体。算法PCMHS能收敛于网络结构的平稳分布,因而具有良好的学习精度,而该算法又通过使其初始分布和建议分布近似于其平稳分布,有效地提高了抽样过程的收敛速度。在标准数据集上的实验结果也验证了算法PCMHS的学习效率和学习精度明显优于经典算法MHS和PopMCMC。 ②数据缺失情况下贝叶斯网络的结构学习:针对数据缺失严重情况下,具有缺失数据的贝叶斯网络结构学习方法存在的学习效率偏低和易于陷入局部最优等问题,本文建立了一种具有缺失数据的贝叶斯网络结构学习算法BC-ISOR,该算法基于界定折叠方法从缺失数据集学习不同变量子集的概率分布,然后基于依赖分析方法进行网络结构的学习。针对属性个数不超过30的数据集,算法BC-ISOR可以通过一遍扫描数据集得到所有已经发生的实例数和可能的实例数,其对缺失数据的处理效率与数据的缺失率无关,并通过在结构学习的过程中采用启发式切割集搜索算法和在冗余边检验之前识别出所有的边的方向来降低条件独立性检验的次数和阶数,因而具有良好的学习性能。在标准数据集上的实验结果表明该算法具有良好的学习效率和学习精度。 2.贝叶斯网络的应用研究 学习贝叶斯网络的目的是基于贝叶斯网络的推理开展贝叶斯网络的应用研究。 ①贝叶斯网络的灵敏度分析:贝叶斯网络的灵敏度分析基于连接树推理算法,主要包括证据重要性分析和参数灵敏度分析。Shafer-Shenoy和Hugin算法设计了两种不同的基于连接树的推理分析算法的消息传播方式,相比于Shafer-Shenoy算法,Hugin算法具有较高的推理分析效率,但在邻接树中存在零因子的情况下不能保证能够通过局部计算进行灵敏度分析,针对这一问题,本文通过在Hugin算法的消息传播过程中引入零因子标志位和零因子处理机制,提出了一种用于进行灵敏度分析的Hugin算法的改进算法R-Hugin,并从理论和实验两个方面证明了R-Hugin算法的正确性和有效性。 ②基于贝叶斯网络的频繁模式发现:本文采用贝叶斯网络表示领域知识,提出一种基于领域知识的频繁项集和频繁属性集的兴趣度计算和剪枝方法BN-EJTR,其目的在于发现当前领域知识不一致的知识,以解决频繁模式挖掘所面临的有趣性和冗余问题。针对兴趣度计算过程中批量推理的需求,BN-EJTR提供了一种基于扩展邻接树消元的贝叶斯网络推理算法,用于计算大量项集在贝叶斯网络中的支持度,同时BN-EJTR提供了一种基于兴趣度阈值和拓扑有趣性的剪枝算法,实验结果表明:与同类方法相比方法BN-EJTR具有良好的时间性能,而且剪枝效果明显,分析发现经过剪枝后的频繁属性集和频繁项集相对于领域知识符合有趣性要求。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 田凤占,张宏伟,陆玉昌,石纯一;多模块贝叶斯网络中推理的简化[J];计算机研究与发展;2003年08期
2 王辉,张剑飞,王双成;基于预测能力的贝叶斯网络结构学习[J];东北师大学报(自然科学版);2005年01期
3 王双成;基于结点排序的贝叶斯网络结构学习[J];计算机工程与应用;2005年18期
4 黄解军,万幼川,潘和平;贝叶斯网络结构学习及其应用研究[J];武汉大学学报(信息科学版);2004年04期
5 李玮玮;王建东;方黎明;丁建立;;基于遗传禁忌算法的贝叶斯网边定向方法[J];计算机工程;2009年12期
6 林士敏;田凤占;陆玉昌;;贝叶斯学习、贝叶斯网络与数据采掘[J];计算机科学;2000年10期
7 李俭川,胡茑庆,秦国军,温熙森;基于故障树的贝叶斯网络建造方法与故障诊断应用[J];计算机工程与应用;2003年24期
8 李伟生,王宝树;基于贝叶斯网络的态势评估[J];系统工程与电子技术;2003年04期
9 孔德华,王锁柱;贝叶斯网络在适应性E-Learning系统中的应用[J];山西师范大学学报(自然科学版);2005年02期
10 闫志勇,李明,倪劲峰,周学海;贝叶斯网络在自适应教育超媒体中的应用[J];计算机工程与应用;2002年08期
11 程岳,王宝树,李伟生;贝叶斯网络在态势估计中的应用[J];计算机工程与应用;2002年23期
12 刘军;基于贝叶斯网络的Web访问模式挖掘模型系统[J];成都信息工程学院学报;2004年01期
13 王秀坤,张少中,杨南海;改进的EM算法及其在防洪决策中应用[J];大连理工大学学报;2004年03期
14 张剑飞;王辉;周颜军;王双成;;基于局部优化具有连续变量的贝叶斯网络结构学习[J];东北师大学报(自然科学版);2006年01期
15 黄浩;宋瀚涛;陆玉昌;;基于小生境遗传算法的贝叶斯网络结构学习算法研究[J];计算机应用研究;2007年04期
16 胡春玲;胡学钢;;一种具有缺失数据的贝叶斯网络结构学习方法[J];合肥工业大学学报(自然科学版);2007年04期
17 赵进晓;肖飞;;一种基于贝叶斯网络的模型诊断方法[J];计算机科学;2009年01期
18 付丹丹;;贝叶斯网络结构学习算法探析[J];牡丹江师范学院学报(自然科学版);2010年04期
19 李冰寒;刘三阳;李战国;;构建贝叶斯网络本质图的新方法[J];计算机工程与应用;2011年07期
20 李俭川,陶利民,胡茑庆,温熙森;设备智能故障诊断与维修支持技术研究[J];仪器仪表学报;2002年S1期
中国重要会议论文全文数据库 前10条
1 宫义山;钱娜;;贝叶斯网络结构在线学习算法及应用[A];科学发展与社会责任(A卷)——第五届沈阳科学学术年会文集[C];2008年
2 马海军;黄德镛;唐立建;;采空区顶板事故动态贝叶斯模型研究[A];2010'中国矿业科技大会论文集[C];2010年
3 黄桂松;;一种基于贝叶斯网络的业务驱动认知网络实现方法[A];江苏省电子学会2010年学术年会论文集[C];2010年
4 董杰;刘春红;李峰;李素芳;王传跃;;基于贝叶斯网络在双相抑郁的静息态网络间关系研究[A];中华医学会精神病学分会第九次全国学术会议论文集[C];2011年
5 杨卓鹏;郑恒;薛峰;任立明;;基于蒙特卡洛--贝叶斯网络方法的卫星地面站可用性分析[A];第二届中国卫星导航学术年会电子文集[C];2011年
6 朱宏博;张芊;赵海;宋纯贺;;基于贝叶斯网络英文电影对白的潜在语义分析[A];第八届沈阳科学学术年会论文集[C];2011年
7 李立志;;基于贝叶斯网络的冠心病血瘀证辨证分析[A];2010中国医师协会中西医结合医师大会摘要集[C];2010年
8 沈海峰;梁曼君;;基于贝叶斯网络的数据挖掘技术[A];全国第十四届计算机科学及其在仪器仪表中的应用学术交流会论文集[C];2001年
9 王鹏;刘震;潘瑾;程尊平;汪卫;施伯乐;;OSBNC:一种快速贝叶斯网络分类算法[A];第二十届全国数据库学术会议论文集(研究报告篇)[C];2003年
10 戴芹;马建文;欧阳赟;;遥感数据处理中引入贝叶斯网络的基本问题研究[A];第十五届全国遥感技术学术交流会论文摘要集[C];2005年
中国博士学位论文全文数据库 前10条
1 张少中;基于贝叶斯网络的知识发现与决策应用研究[D];大连理工大学;2003年
2 李俭川;贝叶斯网络故障诊断与维修决策方法及应用研究[D];中国人民解放军国防科学技术大学;2002年
3 刘思远;信息融合和贝叶斯网络集成的故障诊断理论方法及实验研究[D];燕山大学;2010年
4 华斌;贝叶斯网络在水电机组状态检修中的应用研究[D];华中科技大学;2004年
5 胡文斌;基于多Agent的分布式智能群决策支持系统关键技术研究[D];武汉理工大学;2004年
6 胡春玲;贝叶斯网络结构学习及其应用研究[D];合肥工业大学;2011年
7 洪净;中医辩证量化方法学研究[D];湖南中医学院;2002年
8 黄解军;贝叶斯网络结构学习及其在数据挖掘中的应用研究[D];武汉大学;2005年
9 曹卫东;基于改进贝叶斯网络结构学习的航班延误波及分析[D];天津大学;2009年
10 王红梅;保护隐私的贝叶斯网络学习研究[D];天津大学;2006年
中国硕士学位论文全文数据库 前10条
1 应凤刚;无人作战飞机对地攻击态势威胁评估方法和算法研究[D];西北工业大学;2005年
2 姚宏亮;贝叶斯网络结构学习及其多Agent系统模型研究[D];合肥工业大学;2003年
3 杨晓东;基于贝叶斯网络的配电网可靠性评估[D];华北电力大学(河北);2004年
4 费致根;Bayes网络在故障诊断中的应用[D];郑州大学;2004年
5 肖文辉;基于本体的智能故障诊断的不确定性推理研究[D];湖南科技大学;2010年
6 陈新亿;基于KL距离的贝叶斯网络结构学习算法研究[D];云南大学;2010年
7 钱隆;贝叶斯网络在基于几何模型的建筑物检测中的应用研究[D];合肥工业大学;2003年
8 朱传霞;MMOG中玩家联盟策略的研究[D];沈阳航空工业学院;2010年
9 张荧驿;基于T-S重要度和贝叶斯网络的多态液压系统可靠性分析[D];燕山大学;2011年
10 苏海锋;贝叶斯网络及其在发电系统可靠性评估中的应用[D];河北农业大学;2004年
中国重要报纸全文数据库 前6条
1 刘冰;果树根吸湿法补充微量元素[N];山西科技报;2001年
2 ;走近无线ATM局域网[N];人民邮电;2002年
3 朱星;果树补施微肥四法[N];新疆科技报(汉);2007年
4 赵莹花 夏树良;凹印油墨的配方设计[N];中国包装报;2004年
5 核工业计算机应用研究所研究员 王德安;如何选择64位服务器(一)[N];网络世界;2001年
6 本报记者 于翔;多元管理防范金融风险[N];网络世界;2010年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978