收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

基于深度神经网络的个性化商品推荐研究

范汝鑫  
【摘要】:随着用户和商品内容的快速增长,导致用户越来越难凭借手动搜索或逐一查看的方式获得自己感兴趣的商品,为了提升用户的消费体验和效率,互联网平台利用推荐系统帮助用户在选购商品时提供参考,借助推荐算法挖掘出用户最可能喜欢的商品进行推送。但传统的推荐算法在面对历史交互数据稀疏或新商品推荐的情形时都存在明显的不足,在推荐领域使用深度神经网络的方法可以有效的解决以上问题。本文将基于潜在特征的模型与深度神经网络有效结合在一起,提出了两种混合推荐算法,能够同时从商品内容信息和历史交互信息中挖掘特征,分别应用于不同生命周期的商品推荐。最后根据商品特点构建了基于深度神经网络的推荐框架,为不同的商品匹配合适的算法,提升推荐的准确性。本文的主要工作包括:(1)详细分析了传统推荐算法结合深度学习技术的发展历程和研究现状,提出了目前研究中存在的不足,给出了造成这些不足的原因并给出解决的思路。将本论文中所涉及到的相关理论基础进行介绍,分别对协同过滤算法、基于内容的推荐和深度神经网络的基本思想、理论背景和实际应用中适用情况展开介绍。(2)新商品缺乏历史交互数据,通过引入图像数据并利用卷积神经网络从中提取商品视觉内容特征作为推荐系统的辅助信息,结合隐语义模型从评分数据中挖掘的商品潜在特征,两类特征相辅相成、互相补充。将卷积神经网络和隐语义模型有效结合,并提出了一种新颖的混合推荐算法,通过在真实数据集下的对比实验,该算法要明显优于其他的模型,在数据稀少时,模型表现出优良的稳定性。(3)为了提高成熟商品的推荐效果,引入高质量的评论文本数据,利用基于注意力机制的长短期记忆神经网络从用户和商品的评论文本提取文本特征表征商品的潜在特性,弥补文本与推荐系统的语义鸿沟。与潜语义模型挖掘评分数据的特征两者结合,相互制约、相互补充。最后通过现实世界的真实数据集对该混合推荐算法进行对比实验,实验结果表明该算法提高了评分预测的准确性且很好的兼顾了推荐效率。(4)将前面提出的基于深度神经网络的推荐算法集成到一个推荐框架中,根据商品的不同生命周期将产品细分,分别采用不同的方法进行训练和预测,有效提高准确性。另外,该推荐框架充分利用当今互联网时代的数据资源,添加了蕴藏大量信息的非结构化数据,丰富推荐系统的数据输入。通过对比实验评估基于深度神经网络的推荐框架整体的推荐性能。实验结果证明,本文提出的基于深度神经网络的推荐框架的推荐性能优于现有的推荐框架。


知网文化
【相似文献】
中国期刊全文数据库 前15条
1 胡悦;;金融市场中的神经网络拐点预测法[J];金融经济;2017年18期
2 刘高宇;;深度神经网络在煤质数据分析与预测中的应用[J];电脑知识与技术;2019年28期
3 冯伟业;廖可非;欧阳缮;牛耀;;基于胶囊神经网络的合成孔径雷达图像分类方法[J];科学技术与工程;2019年28期
4 温赞扬;;基于群智优化神经网络的音乐风格分类模型研究[J];现代电子技术;2019年21期
5 郑丽;;建筑设计中神经网络技术与遗传算法探究[J];湖北农机化;2019年21期
6 易炜;何嘉;邹茂扬;;基于循环神经网络的对话系统记忆机制[J];计算机工程与设计;2019年11期
7 黄为;李永刚;胡上成;汪毅;;基于循环神经网络的船摇数据实时预测[J];科学技术与工程;2019年31期
8 赖策;魏小琴;;卷积神经网络的训练方式研究[J];信息与电脑(理论版);2019年22期
9 周济民;;基于神经网络改进的元胞自动机分析——美国阿片类药物滥用情况[J];信息系统工程;2019年11期
10 马猛;王明红;;基于进化神经网络的304不锈钢车削加工表面粗糙度预测[J];轻工机械;2019年06期
11 迟惠生;陈珂;;1995年世界神经网络大会述评[J];国际学术动态;1996年01期
12 吴立可;;脉冲神经网络和行为识别[J];通讯世界;2018年12期
13 林嘉应;郑柏伦;刘捷;;基于卷积神经网络的船舶分类模型[J];信息技术与信息化;2019年02期
14 俞颂华;;卷积神经网络的发展与应用综述[J];信息通信;2019年02期
15 韩真;凯文·哈特尼特;;为神经网络的通用理论建造基石[J];世界科学;2019年04期
中国重要会议论文全文数据库 前10条
1 孙军田;张喆;;基于神经网络数据挖掘技术确定灾害等级的灭火救援出动力量模型研究[A];2016中国消防协会科学技术年会论文集[C];2016年
2 许进;保铮;;神经网络与图论[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
3 唐墨;王科俊;;自发展神经网络的混沌特性研究[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年
4 张广远;万强;曹海源;田方涛;;基于遗传算法优化神经网络的故障诊断方法研究[A];第十二届全国设备故障诊断学术会议论文集[C];2010年
5 李涛;费树岷;;具有变时滞Cohen-Grossberg神经网络的指数稳定性准则[A];第二十六届中国控制会议论文集[C];2007年
6 汪灵枝;秦发金;;具有变时滞和脉冲的离散Cohen-Grossberg神经网络的周期解[A];中国自动化学会控制理论专业委员会D卷[C];2011年
7 韩正之;林家骏;;用神经网络求解非线性相容方程[A];1993年控制理论及其应用年会论文集[C];1993年
8 林家骏;王赞基;;求解不可微优化问题的连续极大熵神经网络[A];1998年中国智能自动化学术会议论文集(上册)[C];1998年
9 姜德宏;徐德民;任章;;基于神经网络的自校正控制器[A];1993中国控制与决策学术年会论文集[C];1993年
10 窦永丰;贝超;;模糊与神经网络结合方式及在控制中的应用[A];1997年中国控制会议论文集[C];1997年
中国博士学位论文全文数据库 前10条
1 刘昂;微结构硅基光子学器件性能的研究[D];南京大学;2019年
2 肖理业;基于机器学习的电磁场建模与设计研究[D];电子科技大学;2019年
3 付钱华;忆阻神经网络的动力学研究[D];电子科技大学;2019年
4 张马路;Spiking机器学习算法研究[D];电子科技大学;2019年
5 杜昌顺;面向细分领域的舆情情感分析关键技术研究[D];北京交通大学;2019年
6 陈涵瀛;核电站热工水力系统工况预测与诊断方法研究[D];哈尔滨工程大学;2018年
7 梁智杰;聋哑人手语识别关键技术研究[D];华中师范大学;2019年
8 饶红霞;信息受限下神经网络的状态估计和拟同步研究[D];广东工业大学;2019年
9 赵博雅;基于卷积神经网络的硬件加速器设计及实现研究[D];哈尔滨工业大学;2018年
10 陈科海;机器翻译上下文表示方法研究[D];哈尔滨工业大学;2019年
中国硕士学位论文全文数据库 前10条
1 白会杰;基于人工智能的光伏发电短期功率预测技术[D];北京交通大学;2019年
2 张荣葳;基于卷积神经网络与SimHash的网络异常流量检测技术研究[D];中国工程物理研究院;2019年
3 张超利;基于神经网络的河南省空气污染预测研究[D];华北水利水电大学;2019年
4 范汝鑫;基于深度神经网络的个性化商品推荐研究[D];合肥工业大学;2019年
5 贾凯;人工蜂群算法与BP神经网络并行集成学习研究[D];合肥工业大学;2019年
6 黄国维;基于深度学习的城市垃圾桶智能分类研究[D];安徽理工大学;2019年
7 江白华;基于深度学习的人脸识别研究[D];安徽理工大学;2019年
8 侯栋楠;基于深度特征学习的振动状态识别方法[D];华北电力大学;2019年
9 肖炜茗;基于Bernstein多项式和阶梯路径构造的前向插值神经网络及逼近能力[D];天津师范大学;2019年
10 强硕;基于神经网络的电锅炉动态过程建模研究[D];华北电力大学;2019年
中国重要报纸全文数据库 前10条
1 张允硕 姜正义 甄海锋 河南理工大学;基于神经网络的自适应PID控制的智能衣架[N];科学导报;2019年
2 湖北日报全媒记者 张爱虎 通讯员 徐向军 实习生 于蓝;一群“90后”率先建成铁路“神经网络”[N];湖北日报;2019年
3 记者 刘霞;忆阻器制成神经网络更高效[N];科技日报;2017年
4 整理 本报记者 诸玲珍 顾鸿儒;微软神经网络切割法可使加速作用超线性[N];中国电子报;2018年
5 ;神经网络小史[N];电子报;2018年
6 张敏;人机大战,到底谁会赢?[N];北京日报;2017年
7 ;人工智能将取得大面积突破[N];中国企业报;2017年
8 本报记者 龚丹韵;人机大战:人类还有优势吗[N];解放日报;2017年
9 ;人类正迎来云端机器人时代[N];中国企业报;2017年
10 张斌;谁还需要“同传”[N];文汇报;2017年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978