收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

高性能耐磨铜基复合材料的制备与性能研究

王德宝  
【摘要】: 随着机械、电子以及航空航天工业的迅猛发展,迫切要求开发不仅具有良好导电(热)性、而且具有较高机械和耐磨性能,较低热膨胀系数的功能材料。铜和铜合金是传统的高导电(热)材料,但由于强度和耐热性不足,其应用范围受到很大的限制。 本文以开发高性能导电(热)耐磨铜基复合材料为目标,通过成分和工艺优化,采用机械合金化(MA)、冷压成形和复压复烧工艺制备出了满足性能要求的颗粒增强Cu(-Cr)基复合材料。以寻求最佳的材料制备工艺,满足材料的高强度、高导电(热)性以及优良的摩擦磨损性能要求。通过SEM,XRD、TEM和其它实验检测仪器对粉末的机械合金化过程,复合材料的微观组织特征以及机械、物理和摩擦磨损性能进行了系统研究,为拓展新型高性能铜基复合材料的应用领域打下坚实基础。本文研究内容主要有以下几个方面: 1.采用机械合金化工艺可使在固态和液态下完全互不溶的Cu-Cr系形成过饱和固溶体,并显著细化晶粒和产生严重晶格畸变。由高能球磨引起的高密度晶体结构缺陷和溶质组元化学势的降低以及晶粒细化对形成Cu-Cr过饱和固溶体起着决定作用。 2.采用冷压-烧结-复压-复烧工艺对Cu-Cr合金粉末致密化过程进行研究。系统探讨了压制压力、烧结温度对相对密度的影响。研究结果表明初压和复压能显著提高材料相对密度,而复烧对提高材料的相对密度贡献不大,其作用主要体现在材料性能的改善和优化。 3.通过对不同成分Cu-Cr合金性能测试,研究了成分、烧结温度和复压复烧对材料力学和物理性能的作用,同时探讨了Cu-Cr合金的增强机制。Cu-1.2wt%Cr合金的硬度、抗拉强度随着烧结温度的升高而增加,在850℃时达到峰值;当温度进一步升高时,由于析出相Cr粒子长大、粗化,与基体失去共格,使得硬度和抗拉强度又有所下降,而材料的导电(热)率则随着烧结温度的升高继续缓慢增加。合金中过饱和的Cr原子对材料强度的影响是通过沉淀强化和细晶强化来实现的。 4.以SiC为增强颗粒,采用粉末冶金工艺制备了颗粒增强铜基复合材料,研究了SiC颗粒体积分数、粒度对复合材料显微组织和力学、物理、摩擦磨损性能的影响。在此基础上着重探讨了SiC颗粒粒度的变化对复合材料性能的影响。结果表明:在制备工艺相同的情况下,SiC粒度为10μm时,复合材料具有最大抗拉强度,达到265.7MPa,其断裂机制是以Cu-SiC界面处基体撕裂为主。当SiC颗粒粒度较大时(≥21μm),由于界面面积有限和增强颗粒间距过大,使得SiC颗粒增强效果有限。相对于强度的变化,复合材料的摩擦磨损特性也随SiC颗粒粒度的变化而发生明显改变。在低载荷条件下(≤120N),增大SiC颗粒粒度有助于提高材料的耐磨性,其磨损机制以磨粒磨损为主。随着载荷的增加,由于大粒度SiC颗粒易于破碎,承载作用下降,导致剥层磨损的发生。通过对复合材料物理性能研究表明:由于SiC粒度减小,复合材料单位体积Cu-SiC界面面积的增加和SiC颗粒间距的减小,都会对自由电子的运动产生阻碍作用,导致复合材导电(热)率下降。复合材料的热膨胀系数随着SiC颗粒粒度的增加而提高;同时由于SiC颗粒粒度的增加,导致材料内部的热应力提高,引起材料热膨胀系数发生突变的临界温度降低。 5.采用化学沉积工艺对SiC颗粒表面包覆Cu或Ni,以改善Cu-SiC界面状况。结果表明:SiC颗粒表面经金属涂层处理提高了复合材料界面结合强度,在基体和增强颗粒之间可以有效传递载荷,使得复合材料的相对密度、硬度和拉伸性能获得提高。由于基体铜和镍镀层之间可以相互扩散,形成连续固溶层,从而使复合材料力学性能提升更为显著。在摩擦磨损过程中由于界面优化减少了SiC颗粒与基体的界面脱粘,有效地发挥承载作用,从而提高了Cu/SiC复合材料的耐磨性。 6.为了结合颗粒强化和析出强化两种强化方式,以Cu-Cr合金为基体,采用SiC颗粒增强Cu-Cr合金,结果发现随着基体强度的提高,可更有效的发挥SiC颗粒对复合材料的增强作用,并改变了复合材料的断裂机制,同时材料软化温度也得到大幅度提高。 7.研究了不同载荷、滑动速度和距离条件下(Cu-Cr)/SiC复合材料的摩擦磨损行为。结果表明:随着SiC颗粒含量的增加,复合材料的耐磨性能得到提高,并延缓了严重磨损的发生。当载荷和滑动速度等条件变化时,复合材料的磨损机制也发生改变,并在某一临界值附近引起磨损率的突然增加。在微缓磨损阶段磨粒磨损和氧化磨损为主要磨损机制;在严重磨损阶段因磨损面机械混合层的剥层脱落和摩擦热导致亚表层基体温升软化及对磨双方材料大量粘着转移为主要磨损机制。 8.研究了(Cu-Cr)/SiC复合材料高温摩擦磨损行为,结果表明SiC颗粒的加入,可以有效提高复合材料发生严重磨损的临界温度。严重磨损发生的原因是因为温度的增加导致磨损面氧化膜破裂、脱落,磨损机制以剥层、粘着磨损为主。石墨颗粒的加入可以降低在一定温度下复合材料的摩擦系数和磨损率,改善了复合材料高温摩擦学特性。 9.研究了纳米SiC颗粒对Cu-Cr合金的增强作用,结果发现在纳米SiC含量较低的情况下(0.5%-3%),复合材料硬度、抗拉强度和摩擦磨损性能随着纳米SiC颗粒增加而得到改善,而当纳米颗粒含量达到5%,则发生团聚现象,对材料力学性能产生不利影响,并导致断裂机制的改变。 本文采用机械合金化工艺制备了Cu-Cr复合粉末,并开发相应的成形工艺,获得最佳工艺参数,然后采用SiC颗粒增强纯Cu和Cu-Cr合金。研究了SiC颗粒含量、粒度和基体强度对复合材料性能的影响。同时通过化学沉积工艺对Cu/SiC复合材料进行界面优化,并探索其对复合材料性能的作用。系统地研究了复合材料在室温和高温环境下的摩擦磨损行为,分析其微观磨损机理。初步探讨了纳米SiC颗粒对Cu-Cr合金性能的增强作用及机制。本论文的研究结果对研制开发新型耐磨铜基复合材料和丰富材料摩擦学有着重要的理论和现实意义。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 秦改元;;颗粒增强铜基复合材料的发展[J];价值工程;2011年25期
2 刘涛;郦剑;凌国平;范景莲;;颗粒增强铜基复合材料研究进展[J];材料导报;2004年04期
3 许少凡,李政,何远程,王成福;碳纤维对镀铜石墨-铜基复合材料组织与性能的影响[J];矿冶工程;2005年01期
4 孙淼;郝斌;刘克明;杨滨;;原位Al_2O_3颗粒增强铜基复合材料的制备及微观组织[J];金属热处理;2006年S1期
5 张剑平;张萌;艾云龙;;TiB_2在原位反应制备铜基复合材料中的应用现状[J];特种铸造及有色合金;2008年07期
6 宣守蓉;范鲁海;;弥散强化铜基复合材料的现状与发展[J];梅山科技;2009年01期
7 湛永钟,张国定,蔡宏伟;高导电耐磨铜基复合材料的研究[J];机械工程材料;2003年11期
8 朱治愿,谢春生,王效莲,陈上清;TiB_2颗粒增强Cu-Cr基复合材料制备工艺及性能[J];武汉船舶职业技术学院学报;2004年04期
9 丁俭,赵乃勤,师春生,何春年;纳米相增强铜基复合材料制备技术的研究进展[J];兵器材料科学与工程;2005年05期
10 郭晓琴;王金凤;华红艳;张为国;;激光熔覆对Cu抗烧蚀性能的影响[J];铸造技术;2006年09期
11 余峰;;原位放热反应合成TiB_2增强铜基复合材料[J];武汉理工大学学报;2007年07期
12 郭铁明;季根顺;马勤;周琦;贾建刚;陈辉;;弥散强化型导电铜基复合材料的研究进展[J];材料导报;2007年07期
13 闵光辉,宋立,于化顺;原位反应铜基复合材料制备工艺[J];材料导报;1997年04期
14 孙世清,毛磊,刘宗茂,郭志猛,殷声;Al_2O_3-Cu和C-Cu复合材料研究进展[J];河北科技大学学报;2001年01期
15 湛永钟,张国定;SiC_p/Cu复合材料摩擦磨损行为研究[J];摩擦学学报;2003年06期
16 车建明;炭纤维增强铜基复合材料摩擦磨损性能同其磨损表面形貌相关性研究[J];摩擦学学报;2004年02期
17 张红霞,胡树兵,涂江平,赵红利;机械合金化制备颗粒增强铜基复合材料的研究进展[J];湖北汽车工业学院学报;2004年02期
18 唐谊平;刘磊;赵海军;朱建华;胡文彬;;短碳纤维增强铜基复合材料的摩擦磨损性能研究[J];材料工程;2007年04期
19 翟启明;徐文清;谢春生;;液-固原位反应合成TiB_2/Cu-Cr复合材料的性能[J];机械工程材料;2007年03期
20 符学龙;李春波;;共沉淀法制备纳米Al_2O_3强化铜基复合材料微动磨损研究[J];新技术新工艺;2009年05期
中国重要会议论文全文数据库 前10条
1 宋影影;王文芳;吴玉程;;碳-铜基复合材料的制备和性能分析[A];2011年安徽省科协年会——机械工程分年会论文集[C];2011年
2 张吉明;谢明;杨有才;李季;陈永泰;崔浩;刘满门;;Y_2O_3/La_2O_3/Al_2O_3/Cu新型铜基复合材料研究[A];有色金属工业科学发展——中国有色金属学会第八届学术年会论文集[C];2010年
3 宋克兴;国秀花;张永振;王旭;张彦敏;;表层Cr_2O_3弥散强化铜基复合材料电滑动摩擦磨损性能研究[A];2011年全国青年摩擦学与表面工程学术会议论文集[C];2011年
4 湛永钟;张国定;S.Hiroshi;庄应烘;周怀营;;界面优化对铜基复合材料微观结构与性能的影响[A];第三届广西青年学术年会论文集(自然科学篇)[C];2004年
5 刘德宝;崔春翔;;不同陶瓷颗粒增强Cu基复合材料的制备及导电性能[A];第五届中国功能材料及其应用学术会议论文集Ⅲ[C];2004年
6 康建立;李家俊;赵乃勤;;碳纳米管增强铜基复合材料的制备[A];提高全民科学素质、建设创新型国家——2006中国科协年会论文集(下册)[C];2006年
7 康建立;李家俊;赵乃勤;;碳纳米管增强铜基复合材料的制备[A];第九次全国热处理大会论文集(一)[C];2007年
8 刘向兵;贾成厂;陈晓华;盖国胜;;放电等离子体烧结(SPS)制备Cu-Al_2O_3复合材料[A];2007中国钢铁年会论文集[C];2007年
9 刘向兵;贾成厂;王富祥;盖国胜;陈晓华;;热压与放电等离子体烧结(SPS)两种工艺制备Cu-Al_2O_3复合材料[A];复合材料——基础、创新、高效:第十四届全国复合材料学术会议论文集(上)[C];2006年
10 宗跃;吴玉程;汪峰涛;王文芳;;SiC和SiO_2纳米颗粒弥散强化铜基复合材料的制备和性能研究[A];第六届中国功能材料及其应用学术会议论文集(2)[C];2007年
中国博士学位论文全文数据库 前10条
1 乔志军;纳米金刚石石墨化转变以及纳米金刚石/铜复合材料的制备与性能[D];天津大学;2007年
2 王德宝;高性能耐磨铜基复合材料的制备与性能研究[D];合肥工业大学;2008年
3 许彪;Cr_3C_2颗粒增强高强高导铜基复合材料研制[D];南昌大学;2008年
4 朱建华;复合电铸制备颗粒增强铜基复合材料工艺及性能研究[D];上海交通大学;2007年
5 邓景泉;铜基/n-AlN功能复合材料的成分、组织及性能研究[D];合肥工业大学;2008年
6 冉旭;铜基减摩耐磨复合材料的制备与性能研究[D];吉林大学;2005年
7 丁俭;原位化学法制备纳米ZrO_2/Cu复合材料的研究[D];天津大学;2007年
8 杨晨;Ti_3AlC_2可加工导电陶瓷及其铜基复合材料的研制[D];吉林大学;2009年
9 王常春;电子封装用SiCp/Cu复合材料的微观组织与性能研究[D];山东大学;2007年
10 许龙山;碳纳米材料的制备及其在复合材料中的应用[D];湖南大学;2009年
中国硕士学位论文全文数据库 前10条
1 姚远;微米石墨颗粒增强铜基复合材料制备工艺[D];沈阳大学;2013年
2 朱晓光;燃烧反应原位合成双相陶瓷增强铜基复合材料[D];武汉理工大学;2005年
3 李韶林;弥散强化铜基复合材料的制备及抗电蚀性能研究[D];河南科技大学;2013年
4 苏青青;短碳纤维表面金属化及其铜基复合材料的制备与性能研究[D];上海交通大学;2010年
5 张志佳;发动机滑动轴承用无铅铜基复合材料的研究[D];天津大学;2012年
6 程抱昌;机械合金化法制备超细TiC颗粒及其增强铜基复合材料的研究[D];昆明理工大学;2001年
7 于东秀;机械合金化放电等离子烧结铜基复合材料摩擦学性能研究[D];吉林大学;2010年
8 刘宝玺;(镀铜Gr+纳米SiCp)/铜基复合材料的制备和性能研究[D];哈尔滨工业大学;2010年
9 张修庆;碳化物弥散强化铜基复合材料的研究[D];昆明理工大学;2002年
10 张翠翠;原位形变Cu-Cr复合材料坯料制备的试验研究[D];河北科技大学;2014年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978