收藏本站
收藏 | 论文排版

低维镍纳米结构材料的绿色和简易制备工艺与磁性能

卜立一  
【摘要】:通过纳米材料结构和形态的可控制备,来裁剪材料的物理、化学和机械性能,已成为材料科学发展的一个重要前沿研究课题。由低维纳米结构单元(零维、一维、二维纳米材料)构筑而成的多级纳米结构材料,因为它们独特的结构-性能依赖性,在电子、磁传感器、靶向药物载体等生物医学领域的出色应用而备受关注。通常实现纳米材料结构与形貌的有效调控方法大多需要借助于各种软和硬模板、表面活性剂、或外加磁场等辅助手段,合成方法既繁琐、昂贵、又不环保,从而限制了它们的进一步应用。本文尝试采用简易、绿色方法制备一维Ni纳米线和碳包裹Ni纳米材料,以获得低维纳米材料的优化制备工艺。主要研究结果如下:一、一维镍纳米线的简易制备工艺与磁性能选择乙二醇为溶剂,水合肼还原剂,在不借助外加辅助磁场和不添加表面活性剂条件下,采用改进的滴注法,直接制备出一维Ni纳米线,并系统研究了制备工艺参数(Ni~(2+)离子浓度、反应温度、碱浓度、和外加磁场强度等)对Ni纳米线合成、结构以及磁性的影响,主要研究结果如下:(1)Ni盐浓度的影响:结果显示,用简易的滴注法制备的Ni纳米线形貌和磁性敏感地依赖于Ni盐浓度的变化(0.05-0.7 mol/L)。当浓度从0.05增加到0.3 mol/L时,由絮状Ni转变为一维Ni纳米线的数量增多,纳米线长度增长,表面凸起晶粒细化,导致晶体沿[111]晶轴取向度提高、表面原子磁矩有序度增强,以及Ni纳米线饱和磁化强度Ms增强。当Ni盐浓度提高到0.7 mol/L时,纳米线表面出现约10 nm厚的片状微结构,部分纳米线团聚成块状,从而导致晶体沿[111]晶轴取向度降低、表面原子磁矩无序度增高,合成产物Ms下降。(2)碱浓度的影响:研究发现,当NaOH从0.3 g增加到1.2 g时,由疏松絮状的纳米颗粒逐渐形成Ni纳米线的数量增多,纳米线纵横比增大、表面变光滑。碱浓度的提高,促使Ni纳米线沿[111]易磁化方向的取向度增高,饱和磁化强度增强。(3)反应温度的影响:当反应温度较低(60℃)时,只形成部分镍纳米线,表面存在刺状纳米颗粒。反应温度升高到80℃时,Ni纳米线数量增多、纵横比增大。再继续提高到100℃时,镍纳米线变短,部分团聚结块,导致Ms显著降低。(4)外加磁场的影响:外加磁场可以使Ni纳米线变直,沿[111]易磁化方向的取向度显著提高,在外加磁场强度为100 mT时,饱和磁化强度Ms达到81.8 Am2·kg-1,相比块体Ni材料的Ms(55 Am2·kg-1)高出近50%。二、碳包裹镍纳米材料的绿色制备工艺与其磁性能采用天然多元醇蓖麻油为溶剂,在不添加任何其它表面活性剂和催化剂的条件下,采用简易的二步法制备了碳包裹Ni纳米颗粒,研究了材料制备工艺参数(Ni~(2+)离子浓度、退火温度、退火时间等)对Ni纳米颗粒合成的影响规律,获得了二步法制备纳米级零价镍的最佳工艺条件:(1)蓖麻油还原金属Ni盐分两个阶段:第一阶段是液相化学反应,在此阶段,蓖麻油酸中的阴离子型活性官能团吸附Ni~(2+)离子,形成Ni的前驱体中间物;第二阶段是湿法化学还原反应,经低中温退火将Ni~(2+)离子还原为零价Ni金属,在此过程中蓖麻油酸长分子链起到修饰作用,从而得到性能稳定的金属Ni纳米晶材料。(2)Ni~(2+)离子浓度的影响:Ni金属盐浓度在3-5 mol/L时,可以制备纯FCC-Ni纳米颗粒,平均晶粒尺寸在28-35 nm之间,在低于3 mol/L或高于6 mol/L时,金属Ni易被氧化而生成NiO杂相。(3)退火温度和时间的影响:在液相(~120℃)温度下化学反应2 h,再经400℃退火1-2 h,可以制备出非晶态碳包裹的零价Ni纳米晶颗粒。在超出以上制备工艺参数范围时,还原出的金属Ni纳米晶易被氧化而生成NiO杂相。(4)磁性测量表明,碳包裹Ni纳米颗粒的饱和磁化强度Ms随Ni盐浓度及退火时间的提高而增强,最高值Ms=11 Am2·kg-1。该值比近期文献报道的用蓖麻油制备Ni纳米棒的最高Ms~3 Am2·kg-1高出数倍。采用该方法制备的金属镍产量相对低,但Ni纳米晶的矫顽力可达Hc~16.4 kA/m,比体块Ni矫顽力有明显的增强。


知网文化
【相似文献】
中国博士学位论文全文数据库 前10条
1 黎作鹏;体域纳米网络关键技术研究[D];哈尔滨工程大学;2014年
2 张正飞;一维氧化钨纳米材料无催化剂生长的原位透射电镜研究[D];浙江大学;2017年
3 刘敬东;铜纳米颗粒合成及其低温烧结互连行为研究[D];哈尔滨工业大学;2017年
4 秦毓辰;铂/金基新型纳米结构催化剂的水热和微波合成及电催化性能研究[D];中国石油大学(北京);2016年
5 谷志远;基于纳米线的光学微腔和纳米激光器[D];哈尔滨工业大学;2016年
6 潘金彬;生物活性蛋白导向简易构建新型高效安全的纳米探针用于肿瘤的诊疗[D];天津医科大学;2017年
7 戴清源;基于乳清分离蛋白修饰的低环境敏感型纳米颗粒构建与稳定机制[D];江南大学;2017年
8 刘洋;多功能纳米胶束体系联合声动力与化疗靶向治疗肝癌的研究[D];天津医科大学;2017年
9 程羽佳;微、纳米ZnO/LDPE复合材料结构形态与介电性能研究[D];哈尔滨理工大学;2017年
10 任勃;镍钴基氧化物纳米纤维的静电纺丝法制备及电化学性能研究[D];哈尔滨工程大学;2014年
中国硕士学位论文全文数据库 前10条
1 卜立一;低维镍纳米结构材料的绿色和简易制备工艺与磁性能[D];安徽工业大学;2017年
2 杨秀娟;金纳米簇的合成与性质的研究[D];长春理工大学;2017年
3 孙怡文;铜锌锡硫纳米结构的制备、相变与光电性能研究[D];合肥工业大学;2017年
4 朱笑天;金纳米棒的制备与修饰及其在环境污染物检测中的应用[D];郑州大学;2017年
5 任雪利;纳米气泡对污染物的吸附及其影响因素探究[D];上海师范大学;2017年
6 孙彦文;基于材料堆积效应的周期纳米结构加工机理及实验研究[D];哈尔滨工业大学;2017年
7 张弘;金属-ZnO纳米棒异质结构的表面增强拉曼效应研究[D];哈尔滨工业大学;2017年
8 杨阳;多级中空纳米纤维负载型催化剂的设计合成及其催化性能研究[D];东北师范大学;2017年
9 刘晓慧;硅表面纳米结构设计与计算[D];青岛大学;2017年
10 张杏;纳米尺度下离子液体水滴电润湿行为的分子模拟计算研究[D];兰州大学;2017年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978