收藏本站
收藏 | 论文排版

多元掺杂钙钛矿型ABO_3催化剂的磁光调控及矿物负载改性研究

汪月琴  
【摘要】:煤炭、石油等化石燃料的过度开采和使用带来能源危机和环境污染两大问题,半导体光催化技术被认为是最具应用前景的洁净能源开发和环境治理措施。SrTi03(STO)和BiFeO3(BFO)是典型的钙钛矿型氧化物半导体,具有特殊的介电、光学和铁磁性能,但由于宽带隙、弱磁性、在处理有机废水中分散性差、难回收等问题制约其发展和应用。针对该问题,提出了共掺杂协同效应、电荷补偿共掺效应、缺陷调控、掺杂浓度拓宽其光响应范围并改善其铁电、铁磁性能,探讨钙钛矿型催化剂的磁光调控机理;构筑了两种矿物(沸石分子筛和高岭土)负载Zn/TM(TM=Mn,Fe,Co)共掺杂STO复合催化剂,为实现高效易回收的钙钛矿型催化剂提供实验支持。主要研究内容和结论如下:首先,基于第一性原理计算研究了 A-B位共掺杂效应对STO的电子结构和光学吸收性能的影响。Zn2+与过渡金属(Cr4+,Mn4+,Fe4+,Co4+)共掺杂STO导致体系由高对称的立方相向低对称的斜方六面体相过渡,3d杂质态跃迁导致带隙减小0.68~1.09 eV。Zn与Cr/Mn/Fe/Co的双掺有利于光催化活性提高,理论预测四种共掺体系的催化活性:Zn/Mn-STOZn/Fe-STOZn/Cr-STOZn/Co-STO,最大吸收边可拓展至706 nm。探讨了碱土金属A(A=Ca,Ba,Mg)与过渡金属Ir共掺杂对STO光学性能的影响,A/Ir的A-B位共掺协同效应导致能带结构从间接带隙过渡到直接带隙,体系由催化非活性直接向催化活性转变。其催化活性:Ba/Ir-STOCa/Ir-STOMg/Ir-STO,催化活性与掺杂碱土金属的离子半径成正比。第二,探讨了电荷补偿效应对STO磁光性能的影响。讨论了 Nb与Cr/Fe的电荷平衡体系,发现两种共掺体系的缺陷形成能低,结构稳定,易于实现掺杂。磁性离子Cr3+和Fe3+的引入,导致Nb-STO由n型转变为p型导体。Nb与Cr/Fe共掺可改善体系的磁性并提高可见光吸收性能,催化活性大小:Nb/Cr-STONbFe-STO。探讨了 Os6+与N3-的电荷补偿效应对STO电子结构的影响,提出了 GGA+Up+Ud的修正计算方法,模拟得到STO的带隙值为3.22 eV,与实验值一致。Os/N-STO非电荷补偿体系的禁带中存在Os 5d和0 2p杂质态,两种构型带隙分别为1.06和1.39eV,带边结构不适合光催化裂解水制氢。Os/2N-STO电荷补偿体系的禁带中杂质态被消除,电荷补偿缺陷得到有效抑制,STO的催化活性明显提高,带隙和带边位置均满足光催化裂解水制氢的标准。第三,鉴于钙钛矿型STO和BFO的磁光性能与其B位的掺杂离子有关,而B位掺杂易引入缺陷,基于第一性原理研究了磁性离子Fe4+/Ni2+共掺杂STO和非磁性离子Zn2+/Mg2+共掺杂BFO在考虑缺陷情形下的电子结构、磁结构和光学性质。不考虑氧空穴时的Fe/Ni-STO保持半导体特性,形成0.36μB的弱磁矩,催化活性较高;考虑氧空穴会导致结构从半导体转变为半金属,产生3μB的巨磁矩,催化活性降低。氧空穴的存在有利于提高Fe/Ni-STO体系的铁磁性,但会导致催化活性降低。讨论了 Zn掺杂Mg-BFO缺陷体系的电子结构并研究了缺陷(Bi空穴和O空穴缺陷)对磁性的影响,Zn/Mg共掺杂导致原有的G型反铁磁序结构发生改变,形成亚铁磁序结构,产生10.08 μB的巨磁矩,磁性有了明显的提高。Bi空穴对磁矩影响较大,磁矩减小为7.98μB,而氧空穴几乎不改变体系的磁矩。第四,探讨了共掺杂离子的掺杂浓度对钙钛矿型STO电子结构、磁性和光学性能的影响。Fe/Mn-STO体系随掺杂浓度的增加发生顺磁-反铁磁-铁磁的磁相转变。掺杂浓度为25%时,体系表现为半金属特性;掺杂浓度为12.5%时,体系的催化性能最佳。讨论了掺杂浓度对La/Ir-STO体系的电子结构的影响,当掺杂浓度低于12.5%,体系的带隙不变,随掺杂浓度的增加,中间杂质态增多导致带隙减小。磁矩与杂质元素的掺杂比例有关,La/Ir掺杂比为1:1时体系无净磁矩,1:1-La/Ir-STO体系的吸收边拓宽至620 nm;当La/Ir 比提高为2:1后磁矩显著增加,但催化活性降低。第五,采用溶胶-凝胶法制备了矿物(ZSM-5沸石分子筛和高岭土)负载型Zn/TM-STO(TM=Mn,Fe,Cr)催化剂样品,研究了共掺STO样品在负载后的晶体结构、表面特性和光催化活性。ZSM-5沸石分子筛和煅烧高岭土的负载均可抑制STO的晶型转变。ZSM-5沸石分子筛和煅烧高岭工作为载体负载后,Zn/TM-STO的比表面积和孔容均增大,有利于催化活性的提高。Zn/TM-STO对MB溶液的降解效率为Zn/Mn-STOZn/Fe-STOZn/Cr-STO,与第二章理论预测结果一致。将纯STO、Zn-STO和ZnMn-STO样品负载到两种载体上,其催化降解效率明显提高。负载型STO/ZSM-5的催化效率最高,在120 min光照时的降解率为91.2%,在同样的光照条件下,负载型STO/高岭土样品对MB的降解效率为87.5%,强吸附性的ZSM-5作为载体对共掺样品催化活性的改善效果略高于煅烧高岭土。通过以上从改善钙钛矿型STO和BFO的磁光性能的理论和实验机制出发,实现了钙钛矿型半导体材料的化学和物理性能的提高,为开发新型矿物负载型SrTi03基和BiFe03基可见光催化剂提供了理论和实验依据。图[81]表[20]参考文献[208]


知网文化
【相似文献】
中国期刊全文数据库 前19条
1 梅海林;唐立丹;王冰;冯嘉恒;;钙钛矿型太阳能电池的研究进展[J];辽宁工业大学学报(自然科学版);2016年01期
2 孟淼飞;马锡英;;钙钛矿型太阳电池的研究进展[J];微纳电子技术;2015年08期
3 杨娅婷;段少勇;姜恒;宫红;;钙钛矿型碱金属钽酸盐中A位离子变换的原因[J];盐业与化工;2014年02期
4 陈婷;郑惠丹;王品;苗承荣;刘佳雯;;钙钛矿型光催化剂的合成、改性掺杂与负载技术的研究进展[J];化学工程师;2008年08期
5 李中秋;侯桂芹;张文丽;;钙钛矿型固体电解质材料的发展现状[J];河北理工学院学报;2006年01期
6 李中秋,侯桂芹,张文丽,仉小猛;钙钛矿型固体电解质材料的研究进展[J];山东陶瓷;2005年04期
7 王道,王苏娅,李琬;钙钛矿型稀土催化剂负载方法的研究[J];环境化学;1988年01期
8 彭高聪,杨汝栋,齐玉兰,刘建民;变价稀土钙钛矿型化合物在稀土分离中的应用——氧化还原法分离镨钕[J];稀土;1988年02期
9 温元凯,柳宏波,李鹏鸽,聂圣哲,周栓虎;钙钛矿型氧化物超导体的模式识别研究[J];硅酸盐学报;1989年01期
10 张燕妮 ,杨宏秀 ,马忠干;钙钛矿型La_(1-X)Sr_X Mn_(1-Y) Cu_Y O_3系对CO催化性能及其与表面过剩氧量的关系[J];兰州大学学报;1989年03期
11 龚燕;潘海波;;钙钛矿型材料作为催化剂的研究进展[J];胶体与聚合物;2017年03期
12 朱宏康;;钙钛矿型化合物研究进展[J];中国材料进展;2016年04期
13 廖传华,徐南平,时钧;钙钛矿型致密膜高温透氧过程的工艺模拟[J];石油与天然气化工;2003年02期
14 刘海峰,徐永利,田莳;钙钛矿型铁电薄膜疲劳性能研究进展[J];材料工程;2000年09期
15 ;专题:钙钛矿光电器件与物理[J];物理学报;2019年15期
16 刘娇;李仁志;董献堆;;钙钛矿型太阳电池研究进展[J];应用化学;2016年05期
17 郑瑛;边关;罗聪;吴琪珑;郑楚光;;钙钛矿型复合载氧体的制备及释氧性能研究[J];中国电机工程学报;2011年35期
18 崔大伟;;钙钛矿型稀土氧化物汽车尾气净化催化剂的研究进展[J];潍坊学院学报;2010年04期
19 张慧敏;胡瑞生;白雅琴;蔡丽;苏海全;;单双钙钛矿型甲烷燃烧催化剂制备方法及应用进展[J];化工进展;2009年S1期
中国重要会议论文全文数据库 前10条
1 李嵩;张丹丹;孙俊才;;新型类钙钛矿型阴极材料的合成与电性能表征[A];第二十八届全国化学与物理电源学术年会论文集[C];2009年
2 申旭东;殷云宇;周龙;龙有文;;钙钛矿型材料BiMn_3Mn_2Ni_2O_(12)的高温高压合成及物性研究[A];第十八届中国高压科学学术会议缩编文集[C];2016年
3 张慧敏;胡瑞生;白雅琴;蔡丽;苏海全;;单双钙钛矿型甲烷燃烧催化剂制备方法及应用进展[A];中国化工学会2009年年会暨第三届全国石油和化工行业节能节水减排技术论坛会议论文集(上)[C];2009年
4 肖爽;杨世和;;Interface and Electrode Engineering for Low-cost and High-performance Perovskite Solar Cells[A];第五届新型太阳能电池学术研讨会摘要集(钙钛矿太阳能电池篇)[C];2018年
5 陈骏;邓金侠;于然波;邢献然;;钙钛矿型铅基化合物结构、负热膨胀及性能[A];中国化学会第29届学术年会摘要集——第05分会:无机化学[C];2014年
6 张焕;薛冬峰;;ABO_3钙钛矿型化合物的结构稳定性和形成性规律[A];《硅酸盐学报》创刊50周年暨中国硅酸盐学会2007年学术年会论文摘要集[C];2007年
7 苏杭;李静;肖俊彦;;基于碳膜电极的柔性钙钛矿电池[A];第五届新型太阳能电池学术研讨会摘要集(钙钛矿太阳能电池篇)[C];2018年
8 刘晓娟;黄碧纯;付名利;叶代启;吴军良;齐少英;张栖;梁红;;载体浸渍改性对钙钛矿型催化剂催化碳烟燃烧性能的影响[A];第六届全国环境催化与环境材料学术会议论文集[C];2009年
9 宋锐;杨铭;袁宏明;冯守华;;B位掺杂Fe的钙钛矿型锰酸盐的水热合成[A];中国化学会第26届学术年会无机与配位化学分会场论文集[C];2008年
10 徐杨帆;杨慕紫;周磊;廖金凤;王旭东;匡代彬;;钙钛矿纳米晶的设计合成与光电/光催化应用[A];2018第二届全国太阳能材料与太阳能电池学术研讨会摘要集[C];2018年
中国博士学位论文全文数据库 前10条
1 汪月琴;多元掺杂钙钛矿型ABO_3催化剂的磁光调控及矿物负载改性研究[D];安徽理工大学;2019年
2 彭路成;胶体卤化铅铯钙钛矿纳米晶的制备及生长机制研究[D];吉林大学;2018年
3 戴思敏;应用于钙钛矿型太阳能电池的富勒烯基电子传输材料的配方工程研究[D];厦门大学;2017年
4 刘洋;钙钛矿太阳能电池的相关物理过程研究[D];吉林大学;2019年
5 常海波;钙钛矿型铌酸盐的水热合成及表征[D];吉林大学;2012年
6 杨铭;掺杂的钙钛矿型锰酸盐的水热合成与性质表征[D];吉林大学;2010年
7 董忠平;掺杂钙钛矿型锰酸盐的合成与性质表征[D];吉林大学;2010年
8 李敏;钙钛矿型铁基复合氧化物的水热合成与性质研究[D];吉林大学;2011年
9 李娜娜;钙钛矿型与双钙钛矿型氧化物的电磁特性及其高压研究[D];吉林大学;2014年
10 王建强;钙钛矿型钽(铌)酸盐纳米光催化剂的制备及性能研究[D];北京理工大学;2015年
中国硕士学位论文全文数据库 前10条
1 李佳起;稳定高效氧化铁基钙钛矿太阳能电池的制备及性能研究[D];电子科技大学;2019年
2 王桑妮;甲胺溴化铅钙钛矿纳米晶的制备及其光学性质和稳定性研究[D];广西大学;2019年
3 李瑞雪;钙钛矿太阳能电池在低辐照条件下的性能研究[D];长安大学;2019年
4 徐迎雪;钙钛矿型太阳电池电荷传输材料的设计与模拟[D];华北电力大学(北京);2019年
5 栾继程;低温制备纯溴钙钛矿太阳电池及其性能研究[D];华北电力大学(北京);2019年
6 周雅清;富勒烯修饰层及其钙钛矿太阳能电池界面工程的研究[D];厦门大学;2018年
7 杨隆凯;基于TiO_2纳米棒阵列的高效钙钛矿太阳能电池的制备[D];厦门大学;2018年
8 程成;镧铁钙钛矿型材料活化过硫酸盐处理典型有机氯农药污染物[D];太原理工大学;2019年
9 郑剑锋;基于Er~(3+)/Mg~(2+)掺杂TiO_2纳米棒的混合阳离子钙钛矿太阳能电池研究[D];华东师范大学;2019年
10 吴超;阳离子对钙钛矿型有机铅碘化物单晶结构与性能影响的研究[D];浙江理工大学;2018年
中国重要报纸全文数据库 前3条
1 本报记者 于海江;钙钛矿光伏组件具备商业化基础[N];中国电力报;2018年
2 记者 张晔 实习生 吴若菡;世界首例无金属钙钛矿型铁电体制备成功[N];科技日报;2018年
3 记者 孟婧;我国分子材料研究获重大进展[N];江苏科技报;2018年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978