收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

幂零群和可解群的一些研究

苛塔 巴拉克  
【摘要】: The principal object of this thesis is to verify if a group that satisfies the normalizer condition does contain a nontrivial abelian normal subgroup. The main reason proposing the topic is that at the time we wrote the report we had no clue as to whether the question had been answered or not. To work on this we proposed the theme (studies on Nilpotent and Soluble groups) which is structured on three chapters. Chapter zero of this thesis gives a brief introduction to the fundamental concepts of group theory-here we collect almost all the information that the rest of this thesis requires. In chapter one we shall study ways in which a group may be decomposed into a set of groups each of which is in some sense of simpler type. We shall develop further the theory introduced in chapter zero of the normal structure of a group. We shall prove the Jordan -Holder theorem and introduce two important classes that are objects of this thesis, the classes of Nilpotent groups and soluble groups. The most important generalizations of commutativity are solubility and Nilpotency. Soluble groups are those that can be constructed from abelain groups by means of a finite number of successive extensions. Not all groups are soluble, for it is clear that nonabelian simple groups are insoluble. A central series is certainly an abelian series and therefore all nilpotent groups are soluble. However, soluble groups are not necessarily nilpotent. For example, let G = S3 and let H be the unique subgroup of G of order 3. Then 1 H G is an abelian series of G , and therefore S3 is soluble. On other hand S3 is not nilpotent, for Z(S3) - 1 and therefore S3 cannot have a central series. Nilpotent groups form a class smaller than that of soluble groups but larger than that of abelian groups. Their definition is more complicated, but they can be more intimately studied than soluble groups. In this chapter we shall prove that a Nilpotent group G satisfies the normalizer condition and we shall use 1. 2. 7 in replying to our principal object. In chapter two we shall talk about generalizations of Nilpotent groups. Of the teeming generalizations of Nilpotence we mention only: local nilpotence and the normalizer condition.


知网文化
【相似文献】
中国期刊全文数据库 前19条
1 王坤仁;S-seminormality and P-nilpotency[J];Northeastern Mathematical Journal;2002年02期
2 海进科;On p-hypercenter of Finite Groups[J];数学进展;2000年04期
3 郭秀云,K.P.Shum;On p-nilpotency and minimal subgroups of finite groups[J];Science in China,Ser.A;2003年02期
4 ;Minimal inner-Σ-Ω-groups and their applications[J];Science China(Mathematics);2011年09期
5 郭文斌;Finite Groups With Given Normalizers of Sylow Subgroups[J];Chinese Science Bulletin;1994年23期
6 Hua Quan WEI;Wei Ping GU;Hong Fei PAN;;Onc*-Normal Subgroups in Finite Groups[J];Acta Mathematica Sinica;2012年03期
7 刘熠;秦亚;;s-Conditionally Permutable Subgroups and p-Nilpotency of Finite Groups[J];Journal of Southwest Jiaotong University(English Edition);2010年02期
8 ;On π-Subpairs of π-Blocks[J];Acta Mathematica Sinica(English Series);2006年06期
9 AMBERG Bernhard;KAZARIN Lev;;Factorizations of groups and related topics[J];Science in China(Series A:Mathematics);2009年02期
10 ;On p-Cover-Avoid and S-Quasinormally Embedded Subgroups in Finite Groups[J];数学研究与评论;2010年04期
11 李样明;A characteristic condition of finite nilpotent group[J];Journal of Zhejiang University Science;2004年07期
12 Lijun HUO;Wenbin GUO;Alexander A.MAKHNEV;;On Nearly SS-Embedded Subgroups of Finite Groups[J];Chinese Annals of Mathematics(Series B);2014年06期
13 赵耀庆,韦革,李世余;C_p-Groups and Some Results on the p-nilpotency[J];数学季刊;1996年03期
14 ;The Influence of Minimal Subgroups on the Structure of Finite Groups[J];Acta Mathematica Sinica(English Series);2000年01期
15 施武杰 ,杨文泽;Solvable CN-Groups and π-Separable Cππ-Groups[J];数学研究与评论;1986年04期
16 李长稳;胡滨;;关于s-拟正规嵌人与c-可补子群的一个注记(英文)[J];数学季刊;2012年02期
17 ;On s-semipermutable Subgroups of Finite Groups[J];Acta Mathematica Sinica(English Series);2010年11期
18 ;Groups Whose Proper Subgroups are Baer Groups[J];Acta Mathematica Sinica(New Series);1996年01期
19 ;GROUPS WHOSE PROPER QUOTIENTS ARE FINITE—BY—NILPOTENT[J];成都气象学院学报;1991年01期
中国重要会议论文全文数据库 前10条
1 ;A Stein Equation Approach for Solutions to the Diophantine Equations[A];Proceedings of 2010 Chinese Control and Decision Conference[C];2010年
2 Lin Shi;Qing Cui;Dongmei Xie;;Group tracking control of second-order multi-agent systems[A];第36届中国控制会议论文集(A)[C];2017年
3 ;Homomorphism and Isomorphism of Fuzzy Group[A];第六届中国不确定系统年会论文集[C];2008年
4 Wu Wen;Li Ping;Zuo Ran;Zeng Qingbo;Wu Desheng;Xie Ni;Long Dingxin;Yuan Jianhui;;The correlation between polymorphism of DNA methyltransferase 3B-149C/T and cancer risk:a meta-analysis[A];中国毒理学会第七次全国会员代表大会暨中国毒理学会第六次中青年学者科技论坛论文摘要[C];2018年
5 Chen CHEN;Lin WANG;Haoxin SHEN;Huwei SONG;Yaling ZHAO;Guanjun ZHANG;Wenzhi LI;Ma LI;Zhimin GENG;;Who Benefits from R0 Resection? A Single-center Analysis of Patients with Stage IV Gallbladder Cancer[A];第十九届中国科协年会——分10微创外科高峰论坛论文集[C];2017年
6 Shuo Dai;Yong Zhang;Limin Jia;Yong Qin;;A Subgroup Discovery Algorithm Based on Genetic Fuzzy Systems[A];2015年中国智能自动化学术会议论文集(第一分册)[C];2015年
7 ;Structural and Phylogenetic analysis of group IA3 and IB4 introns[A];第四届全国RNA进展研讨会论文集[C];2005年
8 ;Reducing Discrete Logarithm Problem of Conic Curve Over GF(2~n) to Discrete Logarithm Problem of Finite Field[A];2007通信理论与技术新发展——第十二届全国青年通信学术会议论文集(上册)[C];2007年
9 Zhang Luo;Song Xing;Shao Yingjie;Wu Changping;Jiang Jingting;;Prognostic value of Midkine expression in patients with solid tumors:A systematic review and meta-analysis[A];第十二届全国免疫学学术大会摘要汇编[C];2017年
10 Barsalote Eda Marie;Munawar Maria;Tian Zhongling;Cai Ruihang;Li Xiaolin;Qu Nan;郑经武;;Characterization and diagnostics of stubby root nematode Trichodorus cedarus Yokoo,1964(Dorylaimida:Trichodoridae)from Zhejiang Province,China[A];中国植物病理学会2017年学术年会论文集[C];2017年
中国博士学位论文全文数据库 前4条
1 Abid Mahboob;[D];中国科学技术大学;2015年
2 史毅茜;[D];华东师范大学;2005年
3 Farai.A.Abdunabi;[D];华中师范大学;2015年
4 张明敬;复典型群的幂零轨道与诱导表示[D];南开大学;2014年
中国硕士学位论文全文数据库 前2条
1 苛塔 巴拉克;幂零群和可解群的一些研究[D];安徽师范大学;2004年
2 Houda Mohamed Mahmoud Moustafa AbdcJla;[D];华中师范大学;2016年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978