收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

冬季大风事件下渤黄海环流及泥沙输运过程研究

乔璐璐  
【摘要】: 冬季大风降温过程是渤黄海冬季常见而重要的天气现象,其对环流发展、泥沙输运有重要的影响。然而目前却鲜有在高时空分辨率的海表面风场、热通量场及波浪场作用下,对渤黄海环流和泥沙输运过程对大风降温事件响应的研究。论文以ECOMSED数值模型为基础,耦合SWAN浅海浪模式,以数值模拟为手段,采用6小时一次ERA40风场及海表热通量数据,对1999年~2000年冬季12月19日~21日的一次大风降温事件对渤黄海环流和泥沙输运过程的影响进行数值模拟。在这种高频、灾害性天气条件下,辽东湾及北黄海水位较冬季平均风时要降低超过50cm,北黄海水位降低的最大幅度达1m,在Ekman输运作用下,中国苏北沿岸出现水位的堆积;剧烈海表降温使得渤海以及黄海的大部分海域温度降低2~4oC,而在黄海东南海域温度有上升趋势,而底层升温区域甚至一直向西北扩展至山东半岛的东南,温度升高近1oC,升温范围与黄海暖流路径相一致,此现象预示了随风力加强的黄海暖流的热平流作用;大风事件的海底淤积结果可以用来解释山东半岛东南海域的淤积带:大风事件使得山东半岛东北部泥沙被再悬浮并受鲁北沿岸流的输送南移,并在山东半岛东南海域岬角环流的弱流区沉积,一次大风事件可导致山东半岛东南海域中心厚度0.5cm的带状淤积泥沙;并且一次大风事件可使得从渤海海峡向黄海和从北黄海向南黄海的净泥沙通量增大为平均风时的3~4倍。 大风事件中,水位及流场的变化表现出分别滞后于最大风力0.5天和1天的位相差,南、北黄海的3个站位的流场观测结果,亦显示流速(尤其是黄海暖流)峰值与风力峰值有12~48小时的位相差,悬浮泥沙更是在风力减弱后数天才得以沉积。风驱动环流数值试验表明,冬季偏北风作用下水位的调整,是大风事件中黄海暖流的增强滞后于风力最大值的原因,正压梯度力控制下的逆风北向流流速极值要待风力松弛后滞后于风力极值约1天。除了极值出现时间的位相差,在风场建立和消失时,海面的调整和消失亦分别需要10天和20天的时间,加之黄海暖流微弱的北向流速,是海表温度数据显示的季节变化中黄海暖舌滞后于偏北风一个月的原因;另外,科氏力和底地形对黄海暖流的西偏起决定性作用。 黄海暖流和海表热通量在冬季渤黄海热收支问题上的不同作用,一直存有争议。利用气候态卫星海表温度数据计算渤、黄海冬季热含量变化率,结果为-106 Wm-2,而NOC1.1a、ERA40、OAFlux+ISCCP和NCEPR四种海表热通量数据显示,冬季气候态渤黄海海域平均海表净热通量为-150 Wm-2,这就意味着海表热通量在渤黄海冬季热含量变化中起主要作用,而超过29%的正的热含量变化,则主要是黄海暖流热平流的作用。1999-2000年冬季一次大风事件,使得渤黄海海域平均热含量变化为-241Wm-2,海表净热通量作用为-281Wm-2,因此黄海暖流的热平流输送在此次大风事件中可超过40 Wm-2,是正常天气条件下的2倍。 潮动力学对泥沙的再悬浮、输移等有重要的作用,同时,高浓度的泥沙又会使得底边界层层化,弱化底应力而反过来影响潮动力学,后者往往是研究者所忽略的。因为论文以黄河口潮动力过程生成的黄河口切变锋出发,讨论了切变锋的生成机制和对河口泥沙分布的影响。黄河口切变锋是以潮流流向相反或者流速显著不同而形成的切变带,黄河口外陡坡地形上的最大潮流等时线存在最大梯度,且潮流椭圆主轴与最大潮流等时线平行分布,是其主要生成机制;底摩擦、径流只能改变切变锋的强度,岸线变化对切变锋影响不大。黄河口外的高泥沙浓度主要是再悬浮产生,而与切变锋的作用关系不大。再谈回潮流作用下的渤、黄海泥沙分布,在苏北浅滩、朝鲜沿岸以及渤海海峡、辽东湾存在的较大泥沙浓度,亦主要是泥沙再悬浮产生;在这些悬沙高浓度区,会导致底边界层的层化,减弱底应力,抑制泥沙再悬浮,在泥沙浓度高的苏北浅滩、北黄海朝鲜沿岸,潮汐振幅和迟角被明显增大。 总体来看,论文讨论了大风降温事件对水位、流场及泥沙输运过程的影响,从动力学上解释了山东半岛东南海域带状淤积区的形成,并初步分析了黄海暖流在短时间尺度和季节变化上与冬季风的位相差以及西偏于黄海深槽的原因;结合卫星资料和数值模式结果,对冬季平均及大风降温事件下的渤黄海冬季热收支进行了分析,给出海表热通量和黄海暖流所起的不同作用;论文从河口潮动力学与泥沙分布关系出发,首次给出黄河口切变锋的生成机制,并探讨了切变锋对黄河口泥沙分布的影响,在此基础上,进一步讨论了渤、黄海潮动力学与泥沙分布的相互关系,并给出泥沙浓度对潮动力学的反作用。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 丁赟;刘磊;钟德钰;张红武;;一维水沙数学模型基于特征的耦合分析[J];水力发电学报;2011年04期
2 朱明栓;;洪泛区洪水泥沙数学模型的研究和应用[J];水利与建筑工程学报;2011年04期
3 ;[J];;年期
4 ;[J];;年期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
11 ;[J];;年期
12 ;[J];;年期
13 ;[J];;年期
14 ;[J];;年期
15 ;[J];;年期
16 ;[J];;年期
17 ;[J];;年期
18 ;[J];;年期
19 ;[J];;年期
20 ;[J];;年期
中国重要会议论文全文数据库 前10条
1 胡克林;丁平兴;;长江口波浪对泥沙输运影响的初步研究[A];第八届全国海岸河口学术研讨会暨海岸河口理事会议论文摘要集[C];2004年
2 王凯;陈斌;;长江口外海域悬浮泥沙输运的初步数值模拟[A];中国海洋湖沼学会第九次全国会员代表大会暨学术研讨会论文摘要汇编[C];2007年
3 陈斌;黄海军;严立文;梅冰;;小清河口海域悬沙输运格局的数值研究[A];中国环境科学学会2009年学术年会论文集(第一卷)[C];2009年
4 陈斌;黄海军;严立文;梅冰;;小清河口海域悬沙输运格局的数值研究[A];第九届全国水动力学学术会议暨第二十二届全国水动力学研讨会论文集[C];2009年
5 李元亚;;紊流和泥沙运动的随机理论[A];第七届全国水动力学学术会议暨第十九届全国水动力学研讨会文集(上册)[C];2005年
6 王世俊;吴小明;苏波;;藤桥河口水沙过程及地貌响应[A];第十四届中国海洋(岸)工程学术讨论会论文集(下册)[C];2009年
7 张文祥;李鹏;杨世伦;刘红;丁平兴;;基于ADP-XR和OBS-3A的潮间带湿地动力泥沙观测——以长江口崇明东滩为例[A];第九届全国河口海岸学术研讨会论文(摘要)集[C];2006年
8 白涛;;ECOMSED在龙口海域的泥沙数值模拟研究[A];第十五届中国海洋(岸)工程学术讨论会论文集(中)[C];2011年
9 张兰丁;宁远;夏成宁;赵文谦;;桥梁水力学问题研究现状及展望[A];第十七届全国水动力学研讨会暨第六届全国水动力学学术会议文集[C];2003年
10 陈子燊;蔡峰;冯砚青;李志强;李志龙;;华南砂质海岸近岸地形动力过程与海滩侵蚀作用研究[A];第十四届中国海洋(岸)工程学术讨论会论文集(上册)[C];2009年
中国博士学位论文全文数据库 前8条
1 乔璐璐;冬季大风事件下渤黄海环流及泥沙输运过程研究[D];中国海洋大学;2008年
2 刘锋;黄河口及其邻近海域泥沙输运及其动力地貌过程[D];华东师范大学;2012年
3 王伟伟;典型海域海底底床稳定性研究[D];中国科学院研究生院(海洋研究所);2007年
4 陈小莉;局部绕流冲刷机理及数值模拟研究[D];清华大学;2008年
5 姜恒志;近海与湖泊三维水动力及物质输运的数值模拟研究和应用[D];大连理工大学;2011年
6 季有俊;渤海海域泥沙输运对季节性因素及地形变化响应的数值模拟研究[D];中国海洋大学;2010年
7 何为;珠江河口分汊机制及其对排洪和咸潮上溯的影响[D];华东师范大学;2012年
8 刘桂卫;黄河三角洲地区地面沉降和风暴潮灾害特征及其环境效应研究[D];中国科学院研究生院(海洋研究所);2010年
中国硕士学位论文全文数据库 前10条
1 赵东淼;基于Youngs-VOF法的垂向二维水流及泥沙输运的数值模拟[D];大连理工大学;2012年
2 宋永港;海南岛重点区沙滩波流输沙模型[D];华东师范大学;2011年
3 李东义;闽江河口悬浮泥沙特征及输运过程初探[D];国家海洋局第三海洋研究所;2008年
4 何孝海;黄河三角洲动力沉积及冲淤演变研究[D];中国海洋大学;2006年
5 赵恩宝;长江口水文、泥沙过程与圆桩冲刷的数值模拟[D];中国科学院研究生院(海洋研究所);2008年
6 匡良;三维泥沙模型及其在港口航道工程建设中的应用[D];中国海洋大学;2008年
7 贾宁;基于SWAN和ECOMSED模式的三维近岸泥沙输运数值研究[D];中国海洋大学;2011年
8 高佳;黄河口海洋动力学和黄河泥沙入海及冲淤趋势研究[D];中国海洋大学;2011年
9 孟凡宇;长江河口区物质输移动力机制研究[D];沈阳理工大学;2010年
10 蒋丰佩;异质潮滩水沙输运研究[D];华东师范大学;2012年
中国重要报纸全文数据库 前3条
1 汪品先;在新的海洋科学革命中抓住机遇[N];上海科技报;2009年
2 记者 张诒年;首个地区研究与培训中心成立[N];中国气象报;2011年
3 本报记者 赵笛;IOC海洋动力学和气候培训与研究区域中心在青挂牌[N];青岛日报;2011年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978