 # 关于图的最大匹配问题的若干结果

【摘要】： The study on the maximum matchings (as well as perfect matchings) of a graph plays a central role in matching theory. In addition to the algorithnis of finding maximum matchings, the structural properties of all maximum matchings are significant in theory or application aspect. Roughly speaking, the properties we are concerned in this thesis are mainly as follows: 1. How many maximum matchings are there in a graph? 2. How are they transformed from each other? 3. How are they growing from smaller matchings? In other words, we shall concentrate ourselves on the enumeration, the transformation graph and the extendability of maximum matchings. The organization of the thesis is as follows. In the first chapter, we list some terminologies, notations and introduce some topics about matching theory. In the second chapter, some results about the number of maximum matchings are presented. In the third chapter, the maximum matching graph of a graph is characterized. In the fourth chapter, we give degree conditions of induced matchingextendable graphs and conditions of a matching and a maximum matching being an induced one, respectively, and obtain some results about matching extendability. Number of Maximum Matchings The research on the number of perfect matchings can be found in many articles [11-14]. But not many results about the number of maximum matchings are known( even in bipartite graphs). In this part, some 1 results about this topic are presented. Firstly, We give some good lower bounds of the number. Theorem 1. Let G = (A, B) be a connected bipartite graph with positive surplus( as viewed from A). Then G has at least IE(G)I + (jAj ?1) * (def(G) ?2) maximum matchings. Theorem 2. Let G = (A, B) be a bipartite graph with positive surplus( as viewed from A), deficiency 1 and minimum degree at least 2. Then G contains at least 2jE(G)j ?21B1 near-perfect matchings. Theorem 3. Let G be a factor-critical graph. Then G has at least IE(G)I ?c)~near-perfect matchings, where c is the number of utvertices of C. ~?bLocks The enumeration problems for maximum matchings on some special graphs are solved. Theorem 4. Let C = (A, B) is a bipartite graph with positive surplus( as viewed from A) and deficiency 1. Then the following are equivalent: (i) Every vertex of A has degree 2; (ii) G is a tree; (iii) Every vertex of A is a barrier of G; (iv) C kas exactly IAI + 1 near-perfect matchings; (v) C ?v has a unique perfect matching for any vertex v C B. Theorem 5. Let C = (A, B) be a bipartite graph with positive surplus( as viewed from A), deficiency 1 and minimum degree 1. Then G has exactly ~E(G)j ?IAI + 1 near-perfect matchings if and only if there exists a vertex in NG(u) with degree 1 for any vertex u in A with degree at least 3. Theorem 6. Let G = (A, B) be a bipartite graph with positive surplus( as viewed from A), deficiency 1 and dG(v) = 2 for each vertex v in B. Then G has exactly 2jBI + 2m near-perfect matchings, where m is the number of cut vertices in B. Theorem 7. Let C be a 2-connected factor-critical graph. Then 2 G has precisely IE(G) near-perfect matchings if and only if there exists an ear decomposition of G starting with a nice odd cycle C; that is, G = C + P1 + ... ?Pk satisfying that P~ is open and two ends of P1 are connected in G~1 by a pending path with length 2 of G for 1 i k whereGo=CandG1=C盤i?..盤iforlik. Theorem 8. Let G be a factor-critical graph. Then C has precisely IE(G)I ?c~iear-perfect matchings if and only if there exists an -4-I ear decomposition of C starting with a nice odd cycle C; that is, C = C + P1 + ... + Pk satisfying that two ends of P~ are connected in G~.1 by a pending path with length 2 of C for any open ear P,, where c is the nuniberof~r~j~ic~jofGandG1 = C+P1+...盤1,wherel i k. Maximum Matching Graph In articles [25-27], authors defined the maximum matching graph as follows. The (如何获取全文？ 欢迎：购买知网充值卡在线充值在线咨询)

CAJViewer阅读器支持CAJ、PDF文件格式

 【相似文献】
 中国期刊全文数据库 前19条
 1 郇潇;鲁红亮;于青林;;Factor-critical 图的阈值(英文)[J];数学季刊;2013年03期 2 WANG JianXin;LI WenJun;LI ShaoHua;CHEN JianEr;;On the parameterized vertex cover problem for graphs with perfect matching[J];Science China(Information Sciences);2014年07期 3 王文环;康丽英;;Results on energies for trees with a given diameter having perfect matching[J];Journal of Shanghai University(English Edition);2011年06期 4 宁齐;UNIQUE FACTOR GRAPHS WITH MAXIMAL NUMBER OF EDGES[J];Science Bulletin;1987年21期 5 Zhou Mingkun;;Matching Polynomials of Polyphenylenes[J];新疆大学学报(自然科学版);1986年03期 6 Ming-hua LI;Yan LIU;;2-Connected Factor-critical Graphs G with Exactly |E(G)| + 1 Maximum Matchings[J];Acta Mathematicae Applicatae Sinica;2017年04期 7 Yi ZHANG;Mei LU;;Some Ore-type Results for Matching and Perfect Matching in k-uniform Hypergraphs[J];Acta Mathematica Sinica;2018年12期 8 原晋江;;INDEPENDENT-SET-DELETABLE FACTOR-CRITICAL POWER GRAPHS[J];Acta Mathematica Scientia;2006年04期 9 ;General Induced Matching Extendability of G~3[J];数学研究与评论;2010年03期 10 ;THE CONNECTIVITY OF MAXIMUM MATCHING GRAPHS[J];Journal of Systems Science and Complexity;2004年01期 11 Jianbin MU;Shaoyuan LI;Jing WU;;On the structural controllability of distributed systems with local structure changes[J];Science China(Information Sciences);2018年05期 12 ;Panconnectivity for Interconnection Networks with Faulty Elements[J];Acta Mathematica Sinica(English Series);2010年04期 13 蒋文斌,周曼丽,彭复员,许毅平;Novel block-matching algorithms by subsampling both search candidates and pixels[J];Journal of Systems Engineering and Electronics;2005年03期 14 ;本刊英文版Vol.26(2010),No.8论文摘要[J];数学学报;2010年05期 15 易志坚;赵朝华;杨庆国;彭凯;黄宗明;;General forms of elastic-plastic matching equations for mode-Ⅲ cracks near crack line[J];Applied Mathematics and Mechanics(English Edition);2009年05期 16 丁国力;ON THE MAXIMUM 2-1 MATCHING[J];Acta Mathematicae Applicatae Sinica(English Series);1987年04期 17 张海良;;关于路与圈的匹配多项式的一个注记（英文）[J];数学季刊(英文版);2018年02期 18 董丽;汤京永;宋新宇;;3-正则无爪图的导出匹配覆盖(英文)[J];数学季刊;2011年03期 19 许宝刚;ON MAXIMAL MATCHINGS OF CONNECTED GRAPHS[J];Acta Mathematica Scientia;2004年04期
 中国重要会议论文全文数据库 前10条
 1 Tianci Ao;Xiaodong Liu;Yan Ren;Rui Luo;Jie Xi;;An approach to scene matching algorithm for UAV autonomous navigation[A];第30届中国控制与决策会议论文集（1）[C];2018年 2 Gong Zhe;Leng Xuefei;Liu Yang;;A fast image matching method based on high-dimensional combined features[A];第36届中国控制会议论文集（D）[C];2017年 3 ;Edge Direction Dispersion and Its Application in Automatic Suitable-matching Area Selection[A];Proceedings of the 2011 Chinese Control and Decision Conference（CCDC）[C];2011年 4 ;A real time displacement estimation algorithm for ultrasound elastography[A];2011年全国压电和声波理论及器件应用研讨会报告程序册及摘要集[C];2011年 5 Yan Zheng;Hong Li;;Interactions Between Introns and Corresponding mRNA Sequences In 5'UTR Region of Complete Genome Sequences in D.melanogaster[A];第五届全国生物信息学与系统生物学学术大会论文集[C];2012年 6 Zhanhai Yu;Ke Wang;Rifeng Li;;The inter-frame Feature Matching and Tracking of Binocular Vision Based on the ORB-PyrLK algorithm[A];第36届中国控制会议论文集（E）[C];2017年 7 Yuxia Sun;Cheng Liu;Hongkun Qiu;;The Research on Patterns and UCT Algorithm in NoGo Game[A];第25届中国控制与决策会议论文集[C];2013年 8 ;A DISCUSSION ON HOUSE COLOR MATCHING[A];2006年中国机械工程学会年会暨中国工程院机械与运载工程学部首届年会论文集[C];2006年 9 Xutang Tao;Zeliang Gao;Youxuan Sun;Xiangxin Tian;Qian Wu;;New developments in nonlinear optical crystals of molybdate and tungstate[A];中国化学会第九届全国无机化学学术会议论文集——C固体无机化学[C];2015年 10 ;Model Matching Control of Multiple-Input-Delay Systems[A];2009中国控制与决策会议论文集（1）[C];2009年
 中国博士学位论文全文数据库 前4条
 1 刘岩;关于图的最大匹配问题的若干结果[D];郑州大学;2000年 2 胡玉梅;广义Randi（?）指标极值图问题的研究[D];南开大学;2006年 3 张晓岩;最小全一问题的解及其算法的研究[D];南开大学;2006年 4 冯启龙;Packing和Matching问题的参数化算法研究[D];中南大学;2010年
 中国硕士学位论文全文数据库 前10条
 1 王勤;图的导出匹配可扩性[D];郑州大学;2000年 2 阿尼斯（Anees Ahmed）;使用静态方法对学生java程序评分[D];哈尔滨工业大学;2018年 3 Pedro Rodríguez Pérez;利用后触碰速度匹配的柔性控制捕获自由浮动目标[D];武汉大学;2018年 4 毋伟;[D];郑州大学;2003年 5 覃玮婷;中概股回归A股市场的路径选择研究[D];广西大学;2018年 6 王蓓蓓;完全二部图的点强可区别全染色方案的若干结果[D];西北师范大学;2017年 7 宁丹;Matching和packing问题的参数算法研究[D];中南大学;2007年 8 宋晨阳;图的最大匹配问题DNA算法研究[D];华东理工大学;2012年 9 Rojanakat Payomrat;基于神经网络的双目视差估计[D];哈尔滨工程大学;2010年 10 鲁晓旭;关于图的导出匹配问题的若干结果[D];郑州大学;2004年
 中国重要报纸全文数据库 前3条
 1 本报特约记者许绘宇 胡峰飞;青年客车完美收官2008 Youngman Perfect Harvest in 2008[N];机电商报;2009年 2 本报记者 王俊;杰狮赢在完美的细节 GENLYON Have Perfect Details[N];机电商报;2009年 3 本报记者 于亮;不亮不暗刚刚好[N];中国计算机报;2005年  快捷付款方式 订购知网充值卡 订购热线 帮助中心 400-819-9993 010-62982499 010-62783978