收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

融合点云与高分辨率影像的城区道路提取与表面重建研究

彭检贵  
【摘要】:近年来,遥感对地观测数据获取能力大幅增强,但与之对应的数据处理与信息提取能力则有待进一步加强,还难于满足国民经济各领域对空间信息要求日益增长的需求,其中一个亟待研究解决的关键科学问题是如何从众多遥感数据中高精度自动提取地物目标信息。道路作为城市中最主要的地物要素之一,是摄影测量与遥感领域中地物信息提取研究的主要对象。近40年来,大量学者展开了基于遥感影像数据的道路特征的半自动和全自动的研究,在理论和技术上都取得了很大发展和创新,但除了一些用于特定数据的半自动道路提取系统外,尚无一种实用的方法用于自动提取城市道路网络。随着三维数字城市的快速发展,人们对于道路信息的分辨率、准确性和实时性需求愈来愈高,基于高分辨率遥感数据的道路提取与重建将是未来的主要发展趋势,但空间分辨率的提高使得影像中非道路目标大量增加,道路提取面临着更大的挑战和困难,现有研究和实践已经表明,基于单一数据源难以提取理想的道路结果,融合多种数据源是一种较为可行的道路提取策略。 高分辨率遥感影像与机载LiDAR点云数据在描述地物目标上具有互补性:影像中边缘信息清晰,但易受阴影、树木等遮挡影响;机载LiDAR点云边缘细节模糊,但不受阴影影响,可部分穿透植被的特性,提供的三维信息可用于道路建模,两种数据的结合能满足精确道路特征提取与重建要求。 针对上述问题,本文研究了结合高分辨率航空影像与机载LiDAR点云数据提取城区道路并进行表面重建的关键技术,论文的主要研究内容如下: 1.研究实现了融合机载LiDAR点云和高分辨率航空影像进行城区道路提取及其表面重建的完整技术流程:“基于机载LiDAR点云提取初始道路中心线”——“基于数据融合与组合辐轮算法自动提取二维精确道路轮廓”——“基于自适应的改进蝶形细分曲面算法重建道路表面”。实验结果证明了本技术流程的可行性。 2.研究了基于机载LiDAR点云提取道路中心线的方法,提出了结合点云高程、强度特征和顾及道路几何特征的由粗到精的道路点云提取策略,并在此基础上利用形态学和感知编组方法提取道路中心线。首先,利用点云高程特征,提出了一种结合移动曲面的自适应渐进加密三角网滤波算法获取地曲点;然后,根据道路点云的强度属性特征从地面点云中提取初始道路点云,并顾及道路几何特征提出基于边长和面积阈值的约束Delaunay TIN方法精化初始道路点云;最后,基于精化后的道路点云生成距离影像,采用数学形态学和感知编组方法提取完整的道路中心线信息。 3.重点研究解决了利用组合辐轮算法提取高分辨率影像中精确道路轮廓的三个关键问题。主要包括: (1)辐轮算法中初始种子点的自动获取。利用基于机载LiDAR道路点云提取的初始道路中心线信息自动初始化辐轮算法的种子点,提高了道路提取的自动化水平和正确率; (2)组合LiDAR特征辐轮消除道路阴影影像的影响。针对传统基于影像灰度特征的辐轮算法易受阴影噪声干扰无法正确提取阴影区道路轮廓的缺陷,利用机载LiDAR点云不受阴影影响的特点,提出了结合机载LiDAR道路点云高程特征和影像灰度特征的组合辐轮算法识别阴影区域,在对阴影区进行信息补偿后再利用基于影像灰度特征的辐轮算法提取精确道路轮廓; (3)组合LiDAR特征辐轮提取双幅道路轮廓,消除双幅道路带来的影响。传统辐轮算法受灰度差异较大的连续分道线影响而不能完整提取双幅道路轮廓,本文利用组合辐轮算法在约束范围内自动寻找双幅道路中另一侧路面的种子点提取道路轮廓而合并成完整道路轮廓;组合辐轮算法还可通过面积和方向约束,自动调整错误的初始种子点位置。 4.研究了结合道路轮廓和机载LiDAR道路点云重建道路表面模型的方法。 道路表面模型重建实质是一个曲面表达过程,常用的格网和TIN表面建模方法不能有效表达道路表面的平滑特征,而细分曲面算法能很好地弥补这一缺点。本文采用自适应的改进蝶形细分算法重建道路表面,重建过程中,通过计算相邻三角形平坦度自适应确定参与细分的三角形,既很好地描述了道路曲面的平滑特性,又控制了数据量的增加,精度也有所提高。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 高恩阳;郑昊鸿;;点云数据滤波方法综述[J];科技资讯;2012年33期
2 龚书林;;三维激光点云处理软件的若干关键技术[J];测绘通报;2014年06期
3 赵强;彭国华;王锋;;点云精简的一种方法[J];西南民族大学学报(自然科学版);2006年05期
4 李德江;张延波;于曼竹;姜丽丽;曲雪光;;基于扫描模式的点云修复技术研究[J];测绘与空间地理信息;2011年06期
5 蔡来良;李儒;;点云数据处理算法与实现初步研究[J];测绘通报;2012年S1期
6 詹庆明;张海涛;喻亮;;古建筑激光点云-模型多层次一体化数据模型[J];地理信息世界;2010年04期
7 曾敬文;朱照荣;丁锐;;基于立方体网格的数据点云约简和体积计算方法[J];测绘科学;2008年06期
8 杨欣;姚海燕;;平面点云边界参数识别[J];中国西部科技;2009年27期
9 孙瑞;张彩霞;;点云数据压缩算法综述[J];科技信息;2010年32期
10 张毅;闫利;;地面激光点云强度噪声的三维扩散滤波方法[J];测绘学报;2013年04期
11 盛业华;张凯;张卡;;多站拼接后三维激光扫描点云的消冗处理[J];测绘通报;2010年03期
12 程效军;李伟英;张小虎;;基于自适应八叉树的点云数据压缩方法研究[J];河南科学;2010年10期
13 吴胜浩;钟若飞;;基于移动平台的激光点云与数字影像融合方法[J];首都师范大学学报(自然科学版);2011年04期
14 张巧英;陈浩;朱爽;;密度聚类算法在连续分布点云去噪中的应用[J];地理空间信息;2011年06期
15 秦高德;曾煌兴;徐兵;;交互式点云建模系统[J];数学的实践与认识;2013年03期
16 朱林华;蔡勇;;一种节省内存的点云中K最近邻算法[J];兵工自动化;2008年07期
17 施晓磊;赵翠莲;荣坚;范志坚;;基于平面层结构勘察的点云快速分割[J];现代机械;2010年05期
18 李德江;殷福忠;孙利民;;基于特征点的点云压缩方法研究[J];测绘通报;2012年01期
19 宋杨;;基于线性八叉树的点云简化与特征提取研究[J];广东科技;2012年17期
20 闫利;谢洪;胡晓斌;鲍秀武;;一种新的点云平面混合分割方法[J];武汉大学学报(信息科学版);2013年05期
中国重要会议论文全文数据库 前10条
1 李文涛;韦群;杨海龙;;基于图像的点云生成和预处理[A];2011年全国通信安全学术会议论文集[C];2011年
2 蔡来良;李儒;;点云数据处理算法与实现初步研究[A];第四届“测绘科学前沿技术论坛”论文精选[C];2012年
3 马国庆;陶萍萍;杨周旺;;点云空间曲线的微分信息计算及匹配方法[A];第四届全国几何设计与计算学术会议论文集[C];2009年
4 江倩殷;刘忠途;李熙莹;;一种有效的点云精简算法[A];第十五届全国图象图形学学术会议论文集[C];2010年
5 解辉;张爱武;孟宪刚;;机载激光点云快速绘制方法[A];第二十五届全国空间探测学术研讨会摘要集[C];2012年
6 李凯;张爱武;;基于激光点云的粮仓储粮数量测量方法[A];第二届“测绘科学前沿技术论坛”论文精选[C];2010年
7 朱晓强;余烨;刘晓平;袁晓辉;Bill P.Buckles;;基于航拍图像和LiDAR点云的城市道路提取[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(上册)[C];2008年
8 刘虎;;基于线性八叉树的点云简化与特征提取研究[A];促进科技经济结合,服务创新驱动发展——蚌埠市科协2012年度学术年会论文集[C];2012年
9 李滨;王佳;;基于点云的建筑测绘信息提取[A];第四届“测绘科学前沿技术论坛”论文精选[C];2012年
10 杨雪春;;反求工程建模中点云切片技术研究[A];全国先进制造技术高层论坛暨第八届制造业自动化与信息化技术研讨会论文集[C];2009年
中国博士学位论文全文数据库 前10条
1 彭检贵;融合点云与高分辨率影像的城区道路提取与表面重建研究[D];武汉大学;2012年
2 刘涌;基于连续序列自动快速拼接的全方位三维测量技术研究[D];西南交通大学;2013年
3 韩峰;基于点云信息的既有铁路状态检测与评估技术研究[D];西南交通大学;2015年
4 金龙存;3D点云复杂曲面重构关键算法研究[D];上海大学;2012年
5 李扬彦;基于点云的三维重建与形变事件分析[D];中国科学院深圳先进技术研究院;2013年
6 杨德贺;面向虚拟测方系统的点云聚类与拟合理论[D];中国矿业大学(北京);2014年
7 何朝明;离散点云处理的关键技术研究[D];西南交通大学;2007年
8 孟凡文;面向光栅投影的点云预处理与曲面重构技术研究[D];南昌大学;2010年
9 李宝;三维点云的鲁棒处理技术研究[D];国防科学技术大学;2011年
10 孟娜;基于激光扫描点云的数据处理技术研究[D];山东大学;2009年
中国硕士学位论文全文数据库 前10条
1 龚硕然;基于Delaunay三角剖分的点云三维网格重构[D];河北大学;2015年
2 杨红粉;频域技术应用于点云配准研究[D];北京建筑大学;2015年
3 段红娟;点云图像交互式曲线骨架提取技术及其应用[D];西南交通大学;2015年
4 张永恒;散乱点云数据配准方法研究[D];长安大学;2015年
5 吴爱;面向特征拟合的点云简化方法研究[D];中国地质大学(北京);2015年
6 薛广顺;基于立体视觉的牛体点云获取方法研究与实现[D];西北农林科技大学;2015年
7 胡诚;精度约束下地表LiDAR点云抽稀方法研究[D];西南交通大学;2015年
8 余明;三维离散点云数据处理技术研究[D];南京理工大学;2015年
9 陈星宇;基于三维彩色点云的地形分类方法研究[D];南京理工大学;2015年
10 朱东方;基于复杂拓扑结构点云的曲线拟合研究与应用[D];山东大学;2015年
中国重要报纸全文数据库 前2条
1 曹裕华 高化猛 江鸿宾;激光点云 亦真亦幻[N];解放军报;2013年
2 中国工程院院士 刘先林;四维远见的装备创新[N];中国测绘报;2012年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978