收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

670t/h多燃料切圆锅炉NO_x生成与排放控制数值模拟

Amir Abu Baker Musa Abd Elgader  
【摘要】:Air Quality Standards are requiring increasingly stringent ozone emissions from numerous furnaces in the chemical process industry. NOx emissions have been identified as a major contributor to ground-level ozone. Available technical solutions range from Co-firing pulverized coal combustion technology and addition of Separated Overfire Air or (overfire air) systems to post-combustion control methods such as selective non-catalytic Reduction SNCR. This dissertation describes (Chinese Power Station), approach to NOx control and its use of CFD modeling as an integral tool in the design and implementation of NOx reduction technologies in a200MW Tangentially coal-fired utility boiler applications. Several technologies were presented on how (Chinese Power Station), has used CFD modeling and measuring data to develop the combustion performance upgrades and modifications for reducing NOx emissions on real size tangentially fired utility boiler. They involve the staging of furnace combustion with co-firing of coal combustion (two fuel systems and three fuel systems), separated overfire air (SOFA) and selective non-catalytic Reduction (SNCR) to reduce NOx emissions from the tangential-fired utility furnace. Furnace simulations were used to optimize the amount of flow rate of co-firing fuels, also to optimize the OFA port placement as well as to identify locations of highest emission concentration. The co-combustion consequence of coal and blast furnace gas BFG (two fuel system), on furnace combustion'performance, and NOx destruction, was investigated. The overall furnace temperature distribution was decreased with the maximum range1601-1722k, that cause to reduce the NOx formed in the main combustion zone by37.5%. In addition, the concentration of02decreased along the furnace with maximum exit percentage of2.0%.Finally for the two-fuel system. The two methods probability density function method, and eddy dissipation method were investigated. The results show a qualitatively agrees well with each other, with negligible variation on all measured parameters. For advance co-combustion technique of coal, BFG, and coke oven gas (COG), the eddy dissipation model was used to perform the numerical simulation of three-fuel combustion in a utility boiler, and to simulate the turbulent gas-phase reaction. The validated CFD model is then applied to investigate the effects of different BFG and COG flow rates on the boiler performance. It is found that increasing the BFG flow rate brings negative effects on the ignition of primary air and pulverized-coal mixture, pulverized-coal burnout, and heat transfer in the furnace and, consequently, decreases the thermal efficiency. However, increasing the COG flow rate can increase the thermal efficiency via improving the pulverized-coal burnout and heat transfer. Increasing both the BFG and COG flow rates is favorable to reducing NO emissions. The results also indicate that co-firing pulverized coal with BFG of about20%heat input and COG of about10%heat input is an optimal operating condition for improving the boiler performance at180MW load. The validated CFD model is then applied to investigate the effects on the temperature and velocity deviations along the upper furnace width. It is found that the maximum temperature deviation is about200K along the furnace width of the boiler load of180MW. The temperature in the right side is higher than that in the left side. With the increase of BFG flow rate, both the temperature and velocity deviations decrease. It indicates increasing the BFG flow rate have little effect on the temperature and velocity deviation along the furnace width. The COG was conducted as reburning fuel, because of its content hydrocarbons. When the COG flow rate increased100%, the in-furnace temperature decreased, and has more effect on NOx reduction. For the flue gas's treatment (flue gases washing out), the separated overfire air (SOFA) and selective non-catalytic reduction techniques were used to evaluate the NOx destruction through boiler. Firstly, the boiler was simulated under full load180MW and20%overfire air. The result shows for the exiting tangentially fired boiler with SOFA group location (2and4meter) upper the reburning zone, the NOx destruction about63%. Finally. the urea was used as SNCR reagent. Numerical simulation was conducted using CFD code to investigate the SNCR technology on NOx reduction, for three types of coal under three different loads. The results obtained the average NOx emissions at full. medium, and lower load range from290-491,226-480, and166-350ppm respectively. The NOx reductions for these three loads ranged from39.69%, and61.59%percent. While the results varied from coal type-to-coal type for the same boiler load. In addition. the urea (NH3) slip for these different operation conditions (coal type and loads) was ranged35-90ppm.


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 Wojciech P.Adamczyk;Gabriel Wecel;Marcin Klajny;Pawel Kozolub;Adam Klimanek;Ryszard A.Bialecki;;Modeling of particle transport and combustion phenomena in a large-scale circulating fluidized bed boiler using a hybrid Euler-Lagrange approach[J];Particuology;2014年05期
2 ;The Simulation of Influence of Different Coals on the Circulating Fluidized Bed Boiler's Combustion Performance[J];Journal of Thermal Science;2003年02期
3 Aliya ASKAROVA;Saltanat BOLEGENOVA;Valeryi MAXIMOV;Meruyert BEKETAYEVA;Pavel SAFARIK;;Numerical Modeling of Pulverized Coal Combustion at Thermal Power Plant Boilers[J];Journal of Thermal Science;2015年03期
4 ;Simulation on an optimal combustion control strategy for 3-D temperature distributions in tangentially pc-fired utility boiler furnaces[J];Journal of Environmental Sciences;2005年02期
5 何金桥;时章明;陈冬林;蒋显亮;鄢晓忠;;Slagging characteristics of molten coal ash on silicon-aluminum combustion liners of boiler[J];Journal of Central South University of Technology;2008年06期
6 ;Analysis on Frequent Flameout of HG-1025/18.2-YM6 Boiler[J];Electricity;2005年03期
7 ;Physicochemical properties and potential health effects of nanoparticles from pulverized coal combustion[J];Chinese Science Bulletin;2009年07期
8 彭升;;Numerical Simulation of Combustion of Butanol Mixed Hydrogen[J];科技视界;2015年05期
9 FENG HongQing;MENG XiangFeng;CHENG Gang;WANG MeiYing;;Analysis and reduction of a detailed chemical kinetic model of 1-pentene combustion at high temperature[J];Chinese Science Bulletin;2013年09期
10 ;Progress of energy system with chemical-looping combustion[J];Chinese Science Bulletin;2009年06期
11 ;Research of Boiler Combustion Regulation for Reducing NOx Emission and its Effect on Boiler Efficiency[J];Journal of Thermal Science;2007年03期
12 周昊;黄燕;莫桂源;廖子昱;岑可法;;不同规模的煤燃烧装置中燃料-N向N_2O和NO_x的转化(英文)[J];Chinese Journal of Chemical Engineering;2013年09期
13 Zhaojun Wen;Xinping Duan;Menglin Hu;Yanning Cao;Linmin Ye;Lilong Jiang;Youzhu Yuan;;Efficient low-temperature soot combustion by bimetallic Ag–Cu/SBA-15 catalysts[J];Journal of Environmental Sciences;2018年02期
14 Lei Deng;Chao Huang;Jiawei Kan;Bing Li;Yingwen Chen;Shemin Zhu;Shubao Shen;;Effect of coating modification of cordierite carrier on catalytic performance of supported NiMnO_3 catalysts for VOCs combustion[J];Journal of Rare Earths;2018年03期
15 Fang CHEN;Hong LIU;;Particle image velocimetry for combustion measurements:Applications and developments[J];Chinese Journal of Aeronautics;2018年07期
16 邓军;何立明;刘兴建;陈一;;Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J];Plasma Science and Technology;2018年12期
17 M.Onifade;B.Genc;;Spontaneous combustion of coals and coal-shales[J];International Journal of Mining Science and Technology;2018年06期
18 Tao Xu;Xiao-jun Ning;Guang-wei Wang;Wang Liang;Jian-liang Zhang;Yan-jiang Li;Hai-yang Wang;Chun-he Jiang;;Combustion characteristics and kinetic analysis of co-combustion between bag dust and pulverized coal[J];International Journal of Minerals Metallurgy and Materials;2018年12期
19 ZHANG Rui;LEI Kai;YE BuQing;CAO Jin;LIU Dong;;Combustion characteristics and synergy behaviors of biomass and coal blending in oxy-fuel conditions: A single particle co-combustion method[J];Science China(Technological Sciences);2018年11期
20 Yuting Liu;Rong He;;A comprehensive fractal char combustion model[J];Chinese Journal of Chemical Engineering;2016年12期
中国重要会议论文全文数据库 前10条
1 ;Application and Research of the Genetic Neural Network with Wavelet Transform in the Boiler Water Temperature Modeling[A];第24届中国控制与决策会议论文集[C];2012年
2 郑直;李金龙;张政;聂万胜;车学科;;Numerical study of ethylene-air combustion in scramjet combustor by assisted of Quasi-DC plasma[A];第十八届全国等离子体科学技术会议摘要集[C];2017年
3 Yang Ding;Liguo Song;Li Yao;;The chemical kinetic study of low-speed internal combustion engine[A];中国化学会第一届全国燃烧化学学术会议论文摘要集[C];2015年
4 GUO Jia-jia;Hu Wei;HUANG Jie;XU Kang-zhen;SONG Ji-rong;;Study on Heat of Formation of ZTO and its Five Coordination Compounds by Combustion Calorimeter[A];中国化学会第五届全国热分析动力学与热动力学学术会议论文摘要集[C];2015年
5 ;Research on pressure rise rate of hydrogen engine Based on the model of combustion chemical reaction dynamic[A];2008 International Hydrogen Forum Programme and Abstract[C];2008年
6 ;Flameless combustion for hydrogen containing fuel[A];2008 International Hydrogen Forum Programme and Abstract[C];2008年
7 R.Owston;J.Abraham;;Fundamental studies of in-cylinder physicochemical processes in support of hydrogen internal combustion engine development[A];2008 International Hydrogen Forum Programme and Abstract[C];2008年
8 张增志;陈志纯;周爽;;The morphology research of the single crystal particles of α-Al_2O_3 nano-powder prepared by combustion[A];2011中国材料研讨会论文摘要集[C];2011年
9 Luobao Zou;Yin Cheng;Zhiwei Zhuang;Zhijian Sun;Weidong Zhang;;An optimization control of thermal power combustion based on reinforcement learning[A];第37届中国控制会议论文集(C)[C];2018年
10 ;Distribution of Hazardous Element in PM10 and PM2.5 Emitted by Coal Combustion in China[A];中国科学院地质与地球物理研究所二○○三学术论文汇编·第五卷(矿产资源与水资源)[C];2003年
中国博士学位论文全文数据库 前10条
1 Amir Abu Baker Musa Abd Elgader;670t/h多燃料切圆锅炉NO_x生成与排放控制数值模拟[D];华中科技大学;2012年
2 刘海峰;均质压燃非均匀性及生物燃料低温燃烧光学诊断试验研究[D];天津大学;2011年
3 安娜;柴油机喷嘴内的空化流动及其强化燃油雾化混合的机理研究[D];华中科技大学;2012年
4 Shadi Ibrahim;[D];华中科技大学;2011年
5 Ibrahim Khider Eltahir Khider;[D];华中科技大学;2008年
6 钱成;二维异孔共价有机框架构筑新策略的研究[D];湖南大学;2018年
7 M.DIOUBA SACKO;[D];华中科技大学;2008年
8 乔风;[D];华中科技大学;2011年
9 马文超;生活垃圾焚烧过程中氯的识别方法与热行为特性研究[D];天津大学;2010年
10 宫丽;精神家园论[D];华中科技大学;2011年
中国硕士学位论文全文数据库 前10条
1 王兴;基于不同压缩比HCNG发动机试验与仿真模拟对比研究[D];清华大学;2012年
2 Nana Agyemang Prempeh;[D];南京信息工程大学;2012年
3 布鲁克;汽油机和HCNG发动机中现代点火概念的分析[D];清华大学;2012年
4 夏恺;[D];清华大学;2010年
5 陈天真;锅炉运行手册英译实践报告[D];江西师范大学;2016年
6 Almaganbetova Gulzhanar;[D];华东理工大学;2017年
7 王诗涵;从吉尔精力模型出发探讨英汉交传数字口译的笔记方法[D];外交学院;2019年
8 Muhammad Zeeshan Jamal;[D];华南理工大学;2018年
9 杨金花;宋词女性形象的图形—背景认知研究[D];广西大学;2018年
10 薛冬冬;英汉指示路径虚拟位移对比研究[D];华东理工大学;2017年
中国重要报纸全文数据库 前2条
1 徐昊;CG领域迎来新动作[N];中国计算机报;2003年
2 陆源;碳·捕获[N];21世纪经济报道;2008年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978